6. Modelllösungen

Die jeweilige Modelllösung stellt eine mögliche Lösung bzw. Lösungsskizze dar. Der gewählte Lösungsansatz und -weg der Schülerinnen und Schüler muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet (Bewertungsbogen: Zeile "Sachlich richtige Lösungsalternative zur Modelllösung").

Teilaufgabe a)

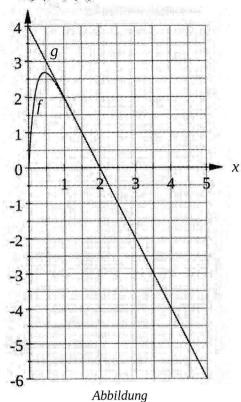
- (1) Es ist f(0) = 0. Daher schneidet der Graph der Funktion f die y-Achse im Punkt $S_{v}(0|0)$.
- (2) Man berechnet $f'(x) = -2 + 20 \cdot e^{-5x}$. Hieraus ergibt sich $f''(x) = -100 \cdot e^{-5x}$. Notwendig für eine Extremstelle x_E ist $f'(x_E) = 0$. Nun gilt: $-2 + 20 \cdot e^{-5x_E} = 0 \Leftrightarrow e^{-5x_E} = 0, 1 \Leftrightarrow e^{5x_E} = 10 \Leftrightarrow 5x_E = \ln(10) \Leftrightarrow x_E = 0, 2 \cdot \ln(10)$. Wegen $f''(x_E) = -10 < 0$ wird an der Stelle $x_E = 0, 2 \cdot \ln(10)$ ein lokales Maximum angenommen.

Teilaufgabe b)

- (1) Wegen $f''(x) = -100 \cdot e^{-5x} < 0$ für alle $x \in \mathbb{R}$ ist die Funktion f' streng monoton fallend.
- (2) Da die Funktion f' streng monoton fallend ist und $f'(x_E) = 0$ gilt (x_E) ist die Extremstelle von f aus a) (2)), erhält man: Für $x < x_E$ ist f'(x) > 0 und für $x > x_E$ ist f'(x) < 0. [Alternativ kann man mit $f'(x) = -2 + 20 \cdot e^{-5x}$ argumentieren.] Somit ist die Funktion f für $x < x_E$ streng monoton steigend und für $x > x_E$ streng monoton fallend.
- (3) Jede streng monotone Funktion besitzt höchstens eine Nullstelle. Da die Funktion *f* zwei Monotoniebereiche hat, besitzt sie höchstens zwei Nullstellen.

Teilaufgabe c)

(1) f(x), g(x)



- (2) Es gilt für alle $x \in \mathbb{R}$: $g(x) > f(x) \Leftrightarrow g(x) f(x) > 0 \Leftrightarrow 4 \cdot e^{-5x} > 0$. Hieraus folgt die Behauptung.
- (3) Nach c) (2) ist $f(x_0) < g(x_0)$. Wegen $f(x_0) = 0$ erhält man $g(x_0) = 4 2x_0 > 0$. Also ist $x_0 < 2$.

[Alternative: Nach c) (2) verläuft der Graph der Funktion f unterhalb der Geraden g. Da g fällt und die x-Achse an der Stelle $x_1 = 2$ schneidet, folgt die Behauptung.]

(4) Es sei A der Inhalt der in der Aufgabenstellung beschriebenen Fläche. Wegen c) (2) erhält man $A = \int_0^1 (g(x) - f(x)) dx = \int_0^1 4 \cdot e^{-5x} dx = \left[-0.8 \cdot e^{-5x} \right]_0^1 = 0.8 - 0.8 \cdot e^{-5} \approx 0.8$ [FE].

Teilaufgabe d)

- (1) Wegen $f(5) = -6 4 \cdot e^{-25} \approx -6$ wurde der Ball etwa 6 m über dem Boden abgeworfen.
- (2) Da f(0) = 0 und $f(5) = -6 4 \cdot e^{-25} \approx -6$, hat der Ball bei x_E die maximale Höhe. Die maximale Höhe des Balles über dem Boden beträgt $f(x_E) + |f(5)| = 3,6 0,4 \cdot \ln(10) + 6 + 4 \cdot e^{-25} \approx 8,68 \text{ [m]}.$
- (3) Der Ball startet auf der Höhe des Fensters von ca. 6 m über dem Boden und muss diese Höhe dann beim Fallen auf den Boden wieder passieren. Offensichtlich ist f(0) = 0. Damit ist $x_{01} = 0,00$ eine Nullstelle der Funktion f. Wegen $f(2) \approx -0,00018$, $f(1,9) \approx 0,2$, $f(1,99) \approx 0,02$, $f(1,999) \approx 0,002$ ist $x_{02} \approx 2,00$ die zweite Nullstelle der Funktion f.
- (4) Da die Funktion f' streng monoton fallend ist, liegen die Extrema am Rand des Zeitintervalls und es ist f'(0) = 18 das Maximum und $f'(5) = -2 + 20 \cdot e^{-25} \approx -2$ das Minimum der Funktion f' im Zeitintervall [0;5].

 Interpretation: Der Ball kann Geschwindigkeiten zwischen 18 m/s und -2 m/s annehmen. Dabei bedeutet eine negative Geschwindigkeit, dass der Ball fällt.

 [Alternative: Die maximale Steiggeschwindigkeit beträgt 18 [m/s] und die maximale Sinkgeschwindigkeit 2 [m/s]].