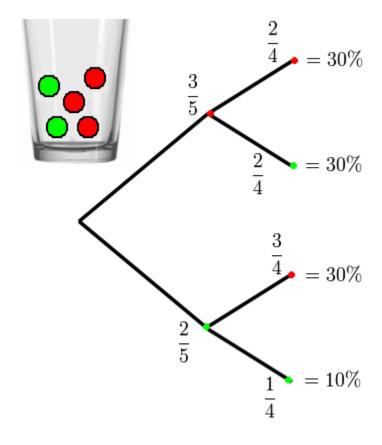
Mathematik - Stochastik

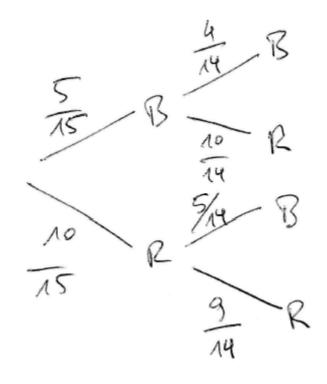
Stochastik - Komplettübersicht

- Baumdiagramm und Vierfeldertafel
- Absolute / bedingte Wahrscheinlichkeiten
- Absolute / relative Häufigkeiten
- Binomialverteilung, Kumulierte Verteilung ("genau…, mindestens…, höchstens…")
- Kombinatorik
- Erwartungswert, Standardabweichung (Laplace-Bedingung), Sigma-Umgebung, Konfidenzintervall
- Hypothesentests (linksseitig, rechtsseitig, beidseitig)



Absolute und relative Häufigkeiten

- Absolute Häufigkeit: "Wie oft kommt etwas vor?"
 - ➤ Beispiel: Notenspiegel
- Relative Häufigkeit = Absolute Häufigkeit / Anzahl aller Häufigkeiten
 - > Beispiel: Notenverteilung



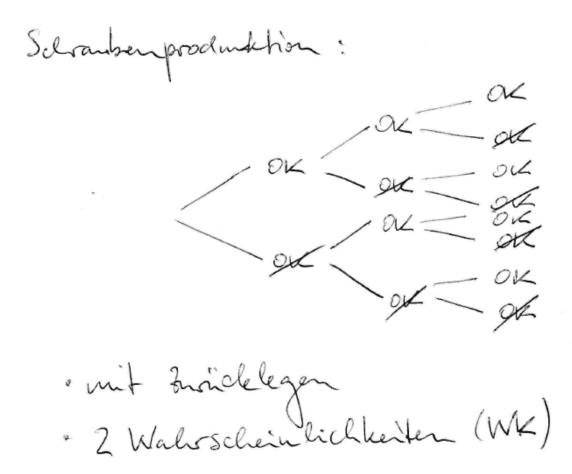
ohne twichlegen

90 % der Schrauben sind ok - Von diesen werden 95% verhauft - Von den kappeten werden 1% verhauft 0,9 0K N 0,855 P(OK NV)
0,9 0K N 0,045 P(OK NV)
0,0 N 0,001 P(n.0K NV)
0,1 n.0k 0,99 P(n.0K NV)

		OK	n.OK				
	٧	0,855	0,001	0,356	P(v)		
n	. V-	0,045	0,099	0,144	P(n.V,)		
		0,9	0,1	1			
Plok) P(n.ak)							

- 1. Schraube ist verhauft und OK 2. Schraube ist verhauft

3. Eine verhaufte Schrambe ist OK
$$P_{v}(oK) = \frac{P(v \cap oK)}{P(v)} = \frac{o_{i}855}{o_{i}856} = 0,9988$$



© examio

11

$$P(x=k) = \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$$

$$P(x=2) = \binom{3}{2} \cdot 0.9^{2} \cdot (1-0.9)^{3-2}$$

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Bedingte Wahrscheinlichkeit (Satz von Bayes)

Für zwei Ereignisse A und B, für $B \neq 0$, lautet das Satz von Bayes:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- P(A|B) ist die (bedingte) Wahrscheinlichkeit des Ereignisses A unter der Bedingung, dass B eingetreten ist
- P(B|A) ist die (bedingte) Wahrscheinlichkeit des Ereignisses B unter der Bedingung, dass A eingetreten ist
- P(A) ist die Anfangswahrscheinlichkeit für das Eintreten des Ereignisses A
- P(B) ist die Anfangswahrscheinlichkeit für das Eintreten des Ereignisses B

Bedingte Wahrscheinlichkeit (Satz von Bayes)

Beispiel:

Ein Drogentest hat eine Spezifität von 99% und eine Sensitivität von ebenfalls 98,5%.

→ d. h., dass die Testergebnisse zu 99% für Drogenkonsumenten korrekt sein werden und zu 98,5% für diejenigen, die keine Drogen zu sich genommen haben

Wir wissen, dass 0,5% der getesteten Menschen Drogen zu sich genommen haben.

Wie hoch ist die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person, die positiv getestet wurde, auch tatsächlich Drogen konsumiert hat?

Bedingte Wahrscheinlichkeit (Satz von Bayes)

Aus dem Satz von Bayes ergibt sich Folgendes:

$$P(\text{Drogens\"{u}chtig}|+) = \frac{P(+|\text{Drogens\"{u}chtig})P(\text{Drogens\"{u}chtig})P(\text{Drogens\"{u}chtig})P(\text{Drogens\"{u}chtig})P(\text{nicht Drogens\"{u}chtig})}{P(+|\text{Drogens\"{u}chtig})P(\text{Drogens\"{u}chtig})+P(+|\text{nicht Drogens\"{u}chtig})P(\text{nicht Drogens\"{u}chtig})}$$

$$= \frac{0.99 \cdot 0.005}{0.99 \cdot 0.005 + 0.015 \cdot 0.995}$$

$$\approx 0,2490$$

Die Wahrscheinlichkeit, dass jemand der positiv getestet wurde die Droge auch tatsächlich konsumiert hat, liegt gerade mal bei **24,9**%!

B (n; p; k)

F(n;p;k)

bleiches Schema, aber timmuliert! Also von 0 bis

Beignel: Von 100 lenten (
$$p = 0,2 \text{ f. Rancher}$$
)

Sind

a) genan 3 Rancher

b) hochstens 3 Rancher

a) $P(x=3) = \binom{100}{3} \cdot 0,2^3 \cdot 0,8^{97} = B(100,0,2,3)$

b) $P(x \le 3) = F(100,0,2,3)$

WK für eine defebte Schraube: 5% a) genan t defekte b) høchstens 7 defehte c) mindestens 7 defebre d) mehr als 2, aber weniger als

c)
$$P(xz7) = 1(-P(x=6) = 1-F(100;0,05;6)$$

oler $\sum_{7}^{100} (100) \cdot 0,05^{x} \cdot 0,95^{100-x}$

© examio

19

Kombinatorik

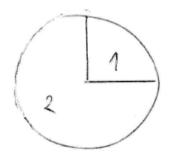
Kombinatorik

Kombinatorik

3) Von 10 Personen werden 3 ansfallig ausgewählt:

- feiherfolge? Nein

- Wall.? Nein $\binom{n}{k} = \binom{10}{3} = \frac{n!}{(n-k)! \cdot k!} = [n CR]$



Einsatz: 5€

Einsatz: 5€

E1: 20€ Anstablung

E2: 3€ -4- 5

- → Erwarteter Gewinn?

 → X: Gewinn in €

$$\sum_{i=1}^{\infty} x_i \cdot P(x=x_i) = E(x)$$

$$E(x) = 0.25 \cdot 15 + 0.75 \cdot (-2) = 2.25$$

$$\Rightarrow \text{ Fair ist in Spiel nur, were } E(x) = 0.$$

Beispiel:
Tasche OK: 90%

Tasche nit Fartsfehler: 5%

Tasche nit Verschlussfehler: 3%

Tasche nit V. und F.: 2%

Kosten je Tasche: 80€ Erlös je Tasche: 150€ Farb- od. Verschl.f.: +30€ auf Kosten Berdes : neue Tasche

Envarteter Genium? (X: Genium in &)
$$\frac{X_1}{Y_0} | \frac{70}{40} | \frac{40}{40} | \frac{40}{-10}$$

$$P(X_1) | \frac{99}{0.05} | \frac{905}{0.03} | \frac{902}{0.02}$$

$$E(X) = 0.9.70 + 0.05.40 + 0.03.40 + 0.02.(-10)$$

$$= 66£$$

> "Spiel" ist **nicht** fair. Ein Unternehmen möchte ja einen Erwartungswert > 0...

© examio

26

Standardabweichung / Sigma-Umgebung

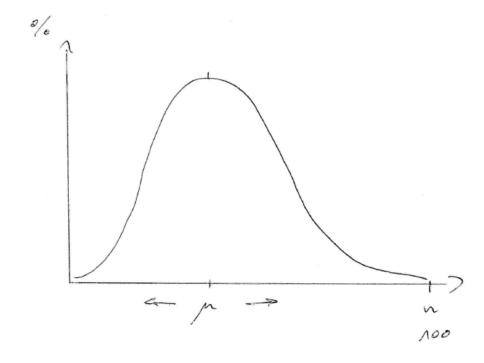
$$P(n-0) \leq x \leq n+0) = 68,3\%$$

$$P(n-1,640 \leq x \leq n+1,640) = 90\%$$

$$P(n-20 \leq x \leq n+20) = 95,4\%$$

$$P(n-30 \leq x \leq n+30) = 99,7\%$$

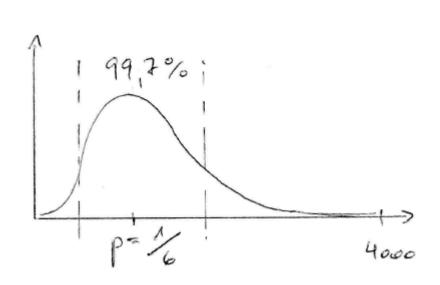
$$O = \sqrt{n \cdot p \cdot (1-p)}$$



Wirfel 4000-mal wesfen. 700-mal soll eine 6 fallen. Sicherheit 99,7%

Relative Häufighert $h_n = \frac{x}{n} = \frac{700}{4000} = 0,175$ $\frac{x}{n} \in [p-3\frac{\pi}{n}; p+3\frac{\pi}{n}]$

$$\left|\frac{x}{n}-p\right| \leq 3\frac{5}{n}$$
 $\left|0,175-p\right| \leq 3\frac{4000p(1-p)}{4000}$
 $\left(0,175-p\right)^{2} \leq 9\cdot\frac{p(1-p)}{4000}$



$$0,030625-0,35p+p^{2} \leq 9\frac{p.(1-p)}{4000}$$
 $\rightarrow 122,5-1400p+4000p^{2} \leq 9p-9p^{2}$
 $\Rightarrow 4009p^{2}-1409p+122,5 \leq 0$
 $\Rightarrow p_{1}=0,1937$
 $p_{2}=0,1577$

© examio

30

- Wahrscheinlichkeit p mittels pq-Formel / Mitternachtsformel / quadratischer Ergänzung bestimmen ist die **genauste** Variante
- Weitere Möglichkeit: Statt p auszurechnen kann man auch die **relative Häufigkeit** einsetzen (in unserem Beispiel $h_n=0.175$) und vergleichen, meist hinreichend genau!

Was sind Hypothesentests?

- Anhand einer **Stichprobe** herausfinden, ob eine Vermutung (Hypothese) wahr ist
 - \triangleright Man stellt zuerst eine Nullhypothese N_0 auf
 - Dann gibt man ein Signifikanzniveau (Irrtumswahrscheinlichkeit) vor und bestimmt den Ablehnungsbereich
 - > Stichprobe ziehen
 - Nach Test festlegen, ob Aussage **angenommen** oder **verworfen** werden muss

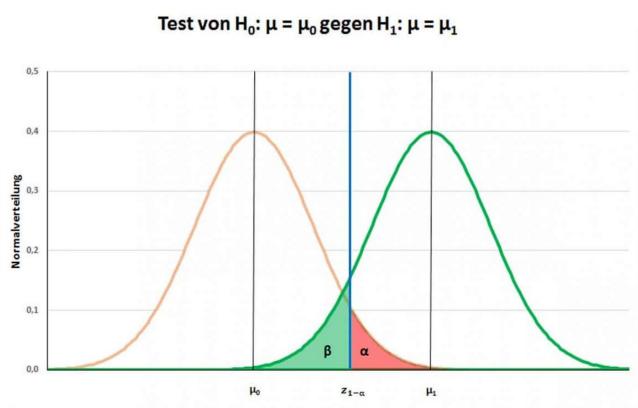
Fehler beim Testen von Hypothesen

- Nach gezogener Stichprobe ist man nun zu einem Ergebnis gekommen...
 - \succ Es kann passieren, dass eine Hypothese als falsch angesehen wird, obwohl sie von Anfang an richtig war (**Fehler 1. Art**, α -Fehler)
 - \triangleright Oder eine Hypothese ist falsch, wurde aber irrtümlich **nicht** verworfen, weil das Stichprobenergebnis noch im Annahmebereich liegt (**Fehler 2. Art**, β -Fehler)

10% aller Schüler lernen mit Videos. Es sind mehr!

$$H_0: p_0 = 0.1$$
 $H_1: p_1 > 0.1$

r tatsächlic	n = 10	{0 2} Entscheidung für H0	{3 10} Entscheidung für H1	
-	0,1 nmt!	Sicherheit 1. Art ✓	Fehler 1. Art (α - Fehler)	
p >	p > 0,1 Fehler 2. Art (β - Fehler)		Sicherheit 2. Art ✓	

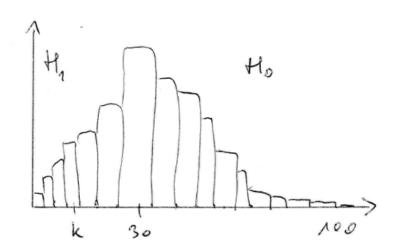


 $Verschieben \ des \ kritischen \ Wertes \ z_{1\text{-}\alpha} \ nach \ rechts \ bedeutet \ Verkleinerung \ von \ \alpha \ und \ Vergrößerung \ von \ \beta \ et \ vice \ versa$

Linksseitiger Hypothesentest

Mindestens 30% der Seluler lemen mit Videos. 100 werden befragt (x = 5%)

$$H_0: p_0 = 0.3$$
 $H_1: p_1 < 0.3$
 $x = 0.05$
 $x = 100$



Linksseitiger Hypothesentest

$$P(X \le k_{pinks}) \le 0.05$$

 $F(100; 0.3; k_{pinks}) \le 0.05$
 $Test in Tabelle:$
 $F(100; 0.3; 21) = 0.0288$
 $F(100; 0.3; 22) = 0.0479$
 $F(100; 0.3; 23) = 0.0755$ X

Ablehuen Nerwerfen $\overline{A} = \{0...22\}$ Hypothese lestähjt $A = \{23...100\}$

Rechtsseitiger Hypothesentest

Höchstens 30% der Sehuler lemen mit Videos. 100 werden befragt (x = 5%) $H_0: p_0 \le 0.3$ $H_1: p_1 > 0.3$ X = 0.05 X = 0.05 X = 0.05 X = 0.05 X = 0.05

Rechtsseitiger Hypothesentest

$$P(x = k_{reclds}) \le 0.05$$
 $1 - P(x \in k_{reclds} - 1) \le 0.05$
 $0.95 \in P(x \le k_{reclds} - 1)$
 $0.95 \in F(x \le k_{reclds} - 1)$

Zweiseitiger Hypothesentest

30% der Selwiler lernen mit Vodeos.

100 werden befragt (
$$\alpha = 5\%$$
)

Ho: $\rho_0 = 0.3$

H₁: $\rho_1 \neq 0.3$
 $\alpha = 0.05$
 $\alpha = 0.05$
 $\alpha = 0.05$
 $\alpha = 0.05$
 $\alpha = 0.05$

Zweiseitiger Hypothesentest

$$P(x \le k_{e}) \le 0.025 \quad P(x \ge k_{r}) \le 0.025$$

$$F(100; 0.3; k_{e}) \le 0.025 \quad 0.975 \le F(100; 0.3; k_{r})$$

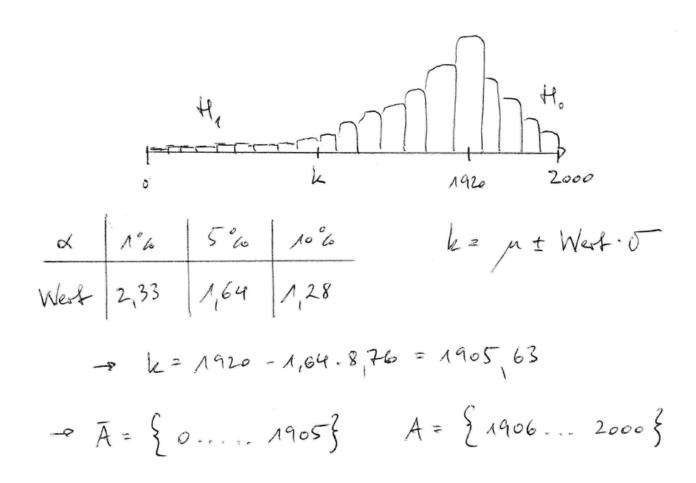
$$F(100; 0.3; 20) = 0.0165 \quad 0.979 = F(100; 0.3; 39)$$

$$\overline{A} = \{0...20\} \qquad \overline{A} = \{40...100\}$$

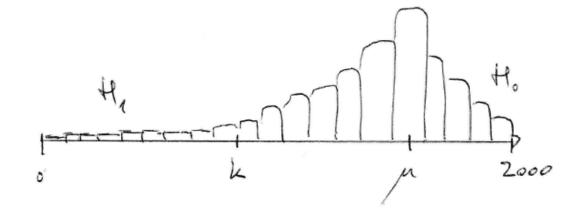
Beispiel:

Mindesters 96% der Vare ist DK.

- s Ansrege wird besveifelt med soll getestett werden.
- 2000 Strick Inhunswalrscheinl. 5%



70% wählen trathe als ihr hieblingsfach. The behauptet es seien weniger. 2000 Schüler werden zefragt. x = 5%



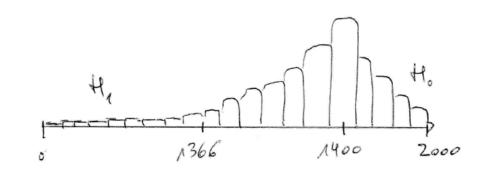
$$L = \int_{A} \pm West \cdot ds$$

$$T = \sqrt{2000 \cdot 0.7 \cdot 0.3} = 20.49 > 3 \sqrt{2000}$$

$$A = \left\{0... 1366\right\} A = \left\{1367... 2000\right\}$$

$$= N = \frac{1366.39}{2000} = 0.683$$

- Tatsächlich nur 68 %, die Mathe wählen.



$$\beta = P(X \ge 1367) = 1 - P(X \le 1366)$$

$$= 1 - \phi \left(\frac{1366 - 2000 \cdot 0.68 + 0.5}{\sqrt{2000 \cdot 0.68 \cdot 0.32}}\right)$$

$$= 1 - \phi \left(1.26\right) = 0.1038 = 10.38\%$$

> Bestimmung Fehler 2. Art mittels φ-Funktion

3M-Aufgabe

Beispiel: Bei einem Glücksspiel gewinnt man mit einer Chance von 5 %. Wie oft muss man *mindestens* spielen, um mit einer Wahrscheinlichkeit von *mindestens* einmal zu gewinnen?

• Schritt 1: Schreibe die Aufgabe als Formel auf:

$$P_n$$
(mindestens 1 Treffer) ≥ 0.99 .

• Schritt 2: Gehe zum Gegenereignis über. Dabei dreht sich das Größer-als-Zeichen um:

$$P_n(\text{kein Treffer}) \leq 0.01.$$

• Schritt 3: Berechne die Wahrscheinlichkeit des Gegenereignisses:

$$P_n(\text{kein Treffer}) = (1 - 0.05)^n$$
.

• Schritt 4: Setze die Gleichung und die Ungleichung zusammen. Es soll also gelten:

$$(1-0.05)^n \le 0.01.$$

Löse diese Gleichung mit dem natürlichen Logarithmus nach n auf. Dabei dreht sich das Größer-als-Zeichen beim Teilen durch ln 0,95 erneut um:

$$0.95^{n} \le 0.01 \implies \ln(0.95^{n}) \le \ln 0.01$$

 $\implies n \cdot \ln 0.95 \le \ln 0.01$
 $\stackrel{\ln 0.95 < 0}{\implies} n \ge \frac{\ln 0.01}{\ln 0.95} \approx 90.$

Man muss mindestens 90 mal spielen.