abiweb
online lernen

Die perfekte Abiturvorbereitung

Winkelfunktion - Wie rechne ich mit dem Sinus?

Geometrie
Sinus, Kosinus und Tangens

Video: Winkelfunktion - Wie rechne ich mit dem Sinus?

Die Winkelfunktionen Sinus, Kosinus und Tangens verwendest du, wenn du die Länge einer Seite oder die Größe eines Winkels in einem rechtwinkligen Dreieck berechnen möchtest.

Zunächst widmen wir uns der Definition des Sinus.

Winkelfunktion Sinus - Definition

Die erste Winkelfunktion, die wir behandeln, ist der Sinus. Er beschreibt das Verhältnis von Gegenkathete zu Hypotenuse.

Merke

Hier klicken zum Ausklappen
$sinus (\alpha) = \frac{Gegenkathete}{Hypotenuse}$

Der Sinus von $\alpha$ (geschrieben $\sin( \alpha)$) ist die Gegenkathete von $\alpha$ geteilt durch die Hypotenuse. Somit beschreibt $\sin( \alpha)$ das Verhältnis der Längen von Gegenkathete und Hypotenuse. Das mag zunächst ein wenig kompliziert klingen, aber die folgenden Beispiele zeigen dir, dass es eigentlich ganz einfach ist.

Was kann man mit dem Sinus berechnen?

Mit dem Sinus kann man entweder die Länge der Hypotenuse oder die Länge der Gegenkathete oder die Größe des Winkels berechnen, je nachdem, welche der drei Größen gesucht ist. Die jeweils anderen beiden Größen müssen gegeben sein.

leicht erklärt text 1

Methode

Hier klicken zum Ausklappen

$Winkel = sin^{-1}(\frac{Gegenkathete}{Hypotenuse})$ 

$Gegenkathete = sin(Winkel)\cdot Hypotenuse$

$Hypotenuse = \frac{Gegenkathete}{sin(Winkel)}$

Auf diese Formeln kommst du durch Umformung der Grundformel $sinus (\alpha) = \frac{Gegenkathete}{Hypotenuse}$. Daher musst du diese Formeln nicht auswendig lernen. Es ist aber dennoch hilfreich sie zu kennen. Vor allem, da du Aufgaben schneller lösen kannst, wenn du nicht erst die Formel umstellen musst.

Sinus - Beispielaufgaben mit Lösungsweg

Winkel berechnen

Beispiel

Hier klicken zum Ausklappen

Winkel

Um die Größe des Winkels $\alpha$ zu berechnen, musst du zuerst das Verhältnis von Gegenkathete zu Hypotenuse bestimmen. Also einfach $\frac{Gegenkathete}{Hypotenuse}$ ausrechnen. Das Ergebnis davon wird dann in die Umkehrfunktion von Sinus, also in $sin ^{-1}$, eingesetzt.

Beispiel

$\alpha =~?$,  Hypotenuse $=~6~cm$,  Gegenkathete $=~3~cm$


$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$sin(\alpha) = \frac{3~cm}{6~cm} = {0,5}$

$\alpha = {sin^{-1}(0,5)} = 30 ^\circ$


Somit gilt: $\alpha$ = $30^\circ$

Gegenkathete berechnen

Beispiel

Hier klicken zum Ausklappen

Gegenkathete

Zur Berechnung der Gegenkathete benötigst du die Länge der Hypotenuse und die Größe des Winkels. Du setzt beide Werte in die Formel ein und stellst die Formel dann nach der Gegenkathete um.

Beispiel

$\alpha = 30 ^\circ$ ,   Hypotenuse = $8,5~cm$ ,   Gegenkathete = $?$


$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$sin(30 ^\circ) = \frac{Gegenkathete}{8,5~cm}$

$sin(30 ^\circ)\cdot 8,5~cm = {Gegenkathete}$

$Gegenkathete = 4,25~cm$


Die Gegenkathete ist 4,25 cm lang.

Übrigens haben die Ergebnisse meist viele Nachkommastellen. Also wundere dich nicht, wenn dein Ergebnis viele Nachkommastellen hat. Du kannst das Ergebnis dann auf zwei Nachkommastellen runden.

 

Hypotenuse berechnen

Beispiel

Hier klicken zum Ausklappen

Hypotenuse

Zuletzt zur Berechnung der Hypotenuse. Hierfür brauchst du die Länge der Gegenkathete und die Größe des Winkels.
Du setzt beide Werte wieder in die Formel ein. Dann stellst du die Formel nach der Hypotenuse um.

Beispiel

$\alpha = 45 ^\circ $ ,  Hypotenuse $=~?~cm$ ,  Gegenkathete $=~4~cm$ 


$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

$sin(45 ^\circ) = \frac{4~cm}{Hypotenuse}$

$sin(45 ^\circ)\cdot Hypotenuse = {4~cm}$
 
$ Hypotenuse = \frac{4~cm}{sin(45 ^\circ)}$

$ Hypotenuse = 4\sqrt{2}~cm  {\approx}  5,657~cm$


Somit ist die Hypotenuse ungefähr 5,657 cm lang.

Merke

Hier klicken zum Ausklappen

In manchen Aufgaben sind die Seiten in unterschiedlichen Längeneinheiten angegeben. Dies kann vorkommen, wenn die Größe des Winkels gesucht ist und die Lägen der Gegenkathete und der Hypotenuse gegeben sind. Bevor du die Werte der Seiten in die Formel einsetzt, musst du die Längen dann zunächst so umrechnen, dass sie in derselben Einheit stehen, beispielsweise beide Seiten in Zentimeter oder beide Seiten in Meter.
 

Jetzt weißt du, wie man mit der Winkelfunltion Sinus umgeht. Dein neues Wissen kannst du nun an unseren Übungsaufgaben testen. Dabei wünschen wir dir viel Spaß und Erfolg!

Lückentext

Berechne die fehlende Länge und runde das Ergebnis auf zwei Nachkommastellen.

$\alpha = 30,96^\circ $


Länge = 3 cm


Länge= 5 cm 

sin aufgabe 2
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Du musst die Länge der Hypotenuse berechnen.
Dafür brauchst du die Länge der Gegenkathete (also 3cm). Die Angeabe 5cm ist für die Aufgabe unrelevant.