abiweb
online lernen

Die perfekte Abiturvorbereitung

Variation ohne Wiederholung berechnen - So geht's!

Video: Variation ohne Wiederholung berechnen - So geht's!

In diesem Lerntext beschäftigen wir uns mit der sogenannten Variation. Die Variation kommt aus dem Bereich der Kombinatorik und tritt in zwei Varianten auf: mit und ohne Wiederholung. In diesem Text geht es zunächst um Variationen ohne Wiederholung. 

Was ist eine Variation? - Bedeutung

Die Variation gibt an, wie viele Möglichkeiten existieren, eine bestimme Auswahl an Objekten zu ordnen.

Beispiel

Hier klicken zum Ausklappen

Die Variation hilft beim Lösen des folgenden Problems:

In einer Kiste befinden sich sechs verschiedenfarbige Kugeln, von denen vier Kugeln gezogen werden. Wie viele mögliche Kombinationen an gezogenen Kugeln gibt es?

Die Variation berücksichtigt also zwei Dinge: Zum Einen gibt es verschiedene Möglichkeiten eine Auswahl zu treffen (vier Kugeln zu ziehen). Zum Anderen kann diese Auswahl unterschiedlich geordnet werden.

Um die Variation zu berechnen, benötigen wir zwei Größen: Die Gesamtanzahl $n$ der Objekte und die Anzahl $k$ der Objekte, die ausgewählt wurden.

Der Unterschied zur Permutation ist also, dass wir die Ordnungsmöglichkeiten einer Auswahl berechnen und nicht der Gesamtmenge der Objekte.

Wie berechnet man die Variation ohne Wiederholung?

Merke

Hier klicken zum Ausklappen

Um die Anzahl an Kombinationsmöglichkeiten einer Auswahl von $k$ Objekten von einer Gesamtanzahl an $n$ Objekten zu berechnen, benutzen wir folgende Formel:

$\Large {\frac{n!}{(n - k)!}}$

Hinweis

Hier klicken zum Ausklappen

Eine Variation ohne Wiederholung bedeutet, dass die ausgewählten Objekte $k$ nicht mehrfach auftauchen dürfen. Für den Fall, dass die Objekte mehrfach auftauchen, benötigen wir eine andere Rechnung.

Beispielaufgaben: Berechnung der Variation ohne Wiederholung

Beispiel

Hier klicken zum Ausklappen

In einer Kiste befinden sich sechs verschiedenfarbige Kugeln, von denen vier Kugeln gezogen werden. Wie viele Möglichkeiten gibt es, die Auswahl von vier Kugeln zu ordnen?

$\Large {\frac{n!}{(n - k)!} = \frac{6!}{(6 - 4)!} = \frac{6!}{2!}\frac{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6}{1 \cdot 2} = \frac{720}{2} = 360}$

Es gibt insgesamt also $360$ Möglichkeiten, vier Kugeln aus einer Menge von sechs Kugeln zu ziehen und diese in den unterschiedlichsten Kombinationen zu ordnen.

Beispiel

Hier klicken zum Ausklappen

Bei einem Autorennen nehmen $10$ Rennfahrer teil. Wie viele Kombinationmöglichkeiten für die ersten drei Platzierungen sind möglich?

$\Large {\frac{n!}{(n - k)!} = \frac{10!}{(10 - 3)!} = \frac{10!}{7!} = \frac{1\cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 7 \cdot 8 \cdot 9 \cdot 10}{1\cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} = \frac{3.628.800}{5040} = 720}$

Es gibt insgesamt $720$ Möglichkeiten für die Top 3-Platzierungen.

Teste dein neu erlerntes Wissen in unseren Übungsaufgaben!

Lückentext
In einem Behälter befinden sich zehn verschiedenfarbige Kugeln. Es werden zufällig vier dieser Kugeln gezogen. Wie viele Kombinationsmöglichkeiten gibt es?
Es gibt insgesamt Kombinationsmöglichkeiten.
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.