abiweb
online lernen

Die perfekte Abiturvorbereitung

Kehrwertsätze - Den Kehrwert eines Logarithmus bilden

Zahlenlehre und Rechengesetze
Logarithmen und Exponentialgleichungen

Video: Kehrwertsätze - Den Kehrwert eines Logarithmus bilden

Neben den Logarithmusgesetzen helfen dir beim Rechnen mit Logarithmen auch die sogenannten Kehrwertsätze. Zunächst sollest du dir noch einmal in Erinnerung rufen, wie die verschiedenen Bestandteile des Logarithmus heißen. Bei den Kehrwertsätzen der Logarithmen tauschen die verschiedenen Variablen nämlich ihren Platz und man kann schnell den Überblick verlieren.

Welche Bestandteile hat ein Logarithmus?

Logarithmus mit der Basis a und dem Numerus b.
Logarithmus mit der Basis a und dem Numerus b.

Die Variable $\textcolor{blue}{a}$ wird Basis genannt, die Variable $\textcolor{black}{b}$ Numerus oder etwas veraltet auch Logarithmand. Die Frage, die hinter dem Logarithmus steckt, lautet: Mit welcher Zahl muss ich die Basis $\textcolor{blue}{a}$ hoch nehmen, um den Numerus $\textcolor{black}{b}$ zu erhalten?

Methode

Hier klicken zum Ausklappen

Was ist der Kehrwert?

$x~ \rightarrow \frac{1}{x}$

Kehrwert eines Logarithmus

Merke

Hier klicken zum Ausklappen

Logarithmen können berechnet werden, indem man Basis und Numerus vertauscht und den Kehrwert bildet.

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b})~=~ \frac{1}{\log_{\textcolor{black}{b}}(\textcolor{blue}{a})}$

Dieser Kehwertsatz ist ein Spezialfall des Basiswechselsatzes. Dabei wählen wir den Numerus als neue Basis.

Hinweis

Hier klicken zum Ausklappen

Basiswechselsatz

Für den Fall, dass ein Logarithmus zur Basis $\textcolor{blue}{a}$ unbekannt ist, kann man ihn in einen Quotienten zweier Logarithmen zu einer beliebigen Basis ($\textcolor{green}{c}$) umwandeln.

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b})~=~ \frac{\log_{\textcolor{green}{c}}(\textcolor{black}{b})}{\log_{\textcolor{black}{\textcolor{green}{c}}}(\textcolor{blue}{a})}$

Wir können den Basiswechselsatz also anwenden, um den ersten Kehrwertsatz zu beweisen:

$\log_{a}(b) = \frac{\log_{b}(b)}{\log_{b}(a)}$

Da $\log_{b}(b)~=~1$ erhalten wir den Satz:

$\log_{a}(b) = \frac{1}{\log_{b}(a)}$

Beispiel

Hier klicken zum Ausklappen

$\log_{8}(2) = \frac{1}{\log_{2}(2)} = \frac{1}{3}$

Logarithmus des Kehrwerts

Merke

Hier klicken zum Ausklappen

Ein Logarithmus des Numerus $\textcolor{black}{b}$ und der Logarithmus von dessen Kehrwert ($\frac{1}{\textcolor{black}{b}}$) unterscheiden sich nur durch das Vorzeichen:

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b}) = - \log_{\textcolor{blue}{a}}(\frac{1}{\textcolor{black}{b}})$

Diese Rechenregel lässt sich mithilfe des 3. Logarithmusgesetzes herleiten. Nach dem dritten Logarithmusgesetz entspricht der Logarithmus einer Potenz dem Exponenten mal dem Logarithmus der Basis der Potenz:

$\log_{a}(b^x) = x \cdot \log_{a}(b)$

Wenden wir diese Rechenhilfe nun rückwärts auf den Logarithmus des Kehrwerts an, erhalten wir den zweiten Kehrwertsatz:

$- \log_{a}(\frac{1}{b}) = -1 \cdot \log_{a}(\frac{1}{b}) = \log_{a}((\frac{1}{b})^{-1}) = \log_{a}(b)$

Beispiel

Hier klicken zum Ausklappen

$\log_{2}(0,25) = - \log_{2}(\frac{1}{0,25}) = - \log_{2}(40) = - 2$

Doppel-Kehrwertsatz

Merke

Hier klicken zum Ausklappen

Ein Logarithmus einer Zahl ist gleich dem Logarithmus, bei dem sowohl von der Basis als auch vom Numerus der Kehrwert gebildet wurde:

$\log_{\textcolor{blue}{a}}(\textcolor{black}{b}) = \log_{\frac{1}{\textcolor{blue}{a}}}(\frac{1}{\textcolor{black}{b}})$

Beispiel

Hier klicken zum Ausklappen

$\log_{0,25}(\frac{1}{16})~=~\log_{\frac{1}{0,25}}(1~:~ \frac{1}{16})~=~\log_{4}(16) = 2$

Kehrwertsätze des Logarithmus - Übersicht

Hier findest du eine Übersicht über alle Kehrwertsätze des Logarithmus:

Merke

Hier klicken zum Ausklappen
  1. Kehrwert eines Logarithmus $\log_{\textcolor{blue}{a}}(\textcolor{black}{b})~=~ \frac{1}{\log_{\textcolor{black}{b}}(\textcolor{blue}{a})}$
  2. Logarithmus eines Kehrwerts $\log_{\textcolor{blue}{a}}(\textcolor{black}{b}) = - \log_{\textcolor{blue}{a}}(\frac{1}{\textcolor{black}{b}})$
  3. Doppel-Kehrwertsatz $\log_{\textcolor{blue}{a}}(\textcolor{black}{b}) = \log_{\frac{1}{\textcolor{blue}{a}}}(\frac{1}{\textcolor{black}{b}})$

Teste nun dein neu erlerntes Wissen mit unseren Übungsaufgaben!

Multiple-Choice
Wie kann man diesen Logarithmus noch ausdrücken?

$\log_{2}(32)$
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.