abiweb
online lernen

Die perfekte Abiturvorbereitung

Rationale, irrationale und reelle Zahlen - Zahlenmengen

Video: Rationale, irrationale und reelle Zahlen - Zahlenmengen

Mathematik und Zahlen? Das steht ja irgendwie im Zusammenhang. Es gibt bestimmte Zahlenmengen in der Mathematik. Mit drei von diesen Zahlenmengen beschäftigt sich dieser Lerntext - mit den Zahlenmengen der rationalen Zahlen, der irrationalen Zahlen und der reellen Zahlen. Hierbei werden wir uns die Definitionen anschauen und einige Beispiele besprechen.

Hinweis

Hier klicken zum Ausklappen

Wenn du mehr über die Zahlenmenge der natürlichen Zahlen und der ganzen Zahlen erfahren möchtest, dann kannst du im Lerntext Zahlenmengen: natürliche und ganze Zahlen weiterlernen.

Was sind rationale (gebrochene) Zahlen?

Die rationalen Zahlen werden auch gebrochene Zahlen genannt, was dir bestimmt einen kleinen Hinweis gibt, welche Zahlen gemeint sein könnten: Es sind die Brüche.

Die rationalen Zahlen beinhalten neben den ganzen Zahlen auch Brüche, wie beispielsweise $ \frac{2}{3} \; oder \; \frac{3}{4}$. Hierbei ist es egal, ob der Bruch als Bruch geschrieben wird oder es sich um eine Dezimalzahl handelt, also der Bruch ausgeschrieben wurde, zum Beispiel $0,25$. Diese Zahlen gehören alle zu den rationalen Zahlen. Das Symbol der rationalen Zahlen ist das $\Large{ℚ}$.

Vertiefung

Hier klicken zum Ausklappen
rationale Zahlen

Die Menge der rationalen Zahlen hat den Buchstaben $\Large{ℚ}$. Das kommt daher, dass die rationalen Zahlen die Brüche beinhalten und ein Bruch ja eine Division ist. Das Ergebnis solch einer Division wird in der Mathematik Quotient genannt und so lässt sich der Buchstabe Q erklären.

Merke

Hier klicken zum Ausklappen

Rationale Zahlen sind alle ganzen Zahlen und zusätzlich alle Brüche.

Das Symbol für die rationalen Zahlen ist: $\Large{ℚ}$.

Was sind irrationale Zahlen?

Die irrationalen Zahlen sind eine weitere Menge in der Mathematik.Die irrationalen Zahlen beinhalten laut Definition nicht die rationalen Zahlen, sondern die Zahlen, die man nicht als Bruch schreiben kann. Diese Zahlen haben unendlich viele Nachkommastellen und können somit nicht als Bruch geschrieben werden. Solche Zahlen sind vor allem wichtige Konstanten, wie Pi, oder die eulersche Zahl, aber auch die Wurzeln aus Zahlen, $\Large{\sqrt{2}}$. Diese Zahlen haben unendlich viele Nachkommastellen und können somit nicht genau bestimmt werden. Wenn du aus ihnen also eine Dezimalzahlen bilden willst, musst du die Zahl runden.

Merke

Hier klicken zum Ausklappen

Die irrationalen Zahlen sind alle Werte, die unendlich viele Nachkommastellen haben. $\Large{\sqrt{2}}$ oder die bekannte Konstante wie $\Large{π \;}$ sind Beispiele für irrationale Zahlen.

Was sind reelle Zahlen?

Die Menge der reellen Zahlen bildet keine neue Gruppe von Zahlen, sondern ist eine Summe aus den beiden Mengen, die oben erwähnt wurden, den rationalen und den irrationalen Zahlen.

Das Symbol für die reellen Zahlen ist das $\Large{ℝ}$

Merke

Hier klicken zum Ausklappen

Die reellen Zahlen sind laut Definition alle irrationalen Zahlen und rationalen Zahlen. In ihr sind also alle wichtigen Zahlenmengen enthalten, die du für die Schule benötigst.

Das Symbol für die reellen Zahlen ist das $\Large{ℝ}$.

Reihenfolge der Zahlenmengen:

Die reellen Zahlen beinhalten die irrationalen Zahlen und die rationalen Zahlen. Die rationalen Zahlen beinhalten die ganzen Zahlen. Die ganzen Zahlen beinhalten die natürlichen Zahlen.

$\Large{ℝ \rightarrow ℚ \rightarrow ℤ \rightarrow ℕ}$

Zahlenmengen im Vergleich
Zahlenmengen im Vergleich: Übersicht

Nun weißt du mehr über rationale Zahlen, irrationale Zahlen und reelle Zahlen und hast Beispiele gesehen. Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Viel Erfolg dabei!

Lückentext

Löse den Lückentext.

Die  sind alle Zahlen, die als Bruch darstellbar sind. Sie sind ein Teil der  . Auch gibt es die , welche alle Zahlen mit unendlich vielen Nachkommastellen beinhalten.
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.