abiweb
online lernen

Die perfekte Abiturvorbereitung

Wie konstruiert man den Spiegelpunkt und die Spiegelachse?

Geometrie
Geometrische Grundkonstruktionen

Video: Wie konstruiert man den Spiegelpunkt und die Spiegelachse?

Es gibt verschiedene Arten von Spiegelungen. Zwei wichtige Arten der Spiegelung sind die Punktspiegelung und die Achsenspiegelung.
In diesem Text wird dir erklärt, wie du den Punkt bzw. die Achse, an dem/der gespiegelt wurde, findest.

Wie findet man den Spiegelpunkt?

Ein Punkt $P$ und dessen Bildpunkt $P'$ sind gegeben. Wir sollen nun den Punkt bestimmen, an dem der Punkt $P$ gespiegelt wurde.

Punktspiegelung_zentrum_1
Abbildung: Punkt $P$ und Bildpunkt $P'$ 

Um den Spiegelpunkt zu bestimmen, müssen wir je einen Kreis um die beiden Punkte zeichnen. Der Radius der beiden Kreise muss sowohl gleich groß sein als auch so groß, dass sich die beiden Kreise schneiden.

Da, wo sich die beiden Kreise schneiden, entstehen zwei Schnittpunkte (hier $A$ und $B$). Durch diese beiden Schnittpunkte ziehen wir eine Gerade.

$A$ und $B$" alt="Punktspiegelung_zentrum_2" src="/assets/courses/media/punktspiegelung-zentrum-2-ca.png">
Abbildung: Gerade durch Schnittpunkte $A$ und $B$

Jetzt wird noch eine Gerade durch die Punkte $P$ und $P'$ gezogen. Wir haben nun zwei Geraden: Die erste Gerade geht durch die beiden Schnittpunkte der Kreise und die zweite Gerade verbindet $P$ und $P'$. An der Stelle, an der sich diese beiden Geraden schneiden, liegt der Spiegelpunkt ($S$). Hier wurde der Spiegelpunkt grün markiert.

Punktspiegelung_zentrum_3
Abbildung: Spiegelpunkt $S$ am Schnittpunkt der beiden Geraden

Vorgehensweise

Methode

Hier klicken zum Ausklappen
  1. Jeweils einen Kreis um die beiden Punkte zeichnen. Diese beiden Kreise müssen den gleichen Radius haben, der so groß sein muss, dass sich die beiden Kreise schneiden.
  2. Durch die Schnittpunkte der beiden Kreise wird eine Gerade gezogen.
  3. Eine weitere Gerade wird durch den Punkt $P$ und den gespiegelten Punkt $P'$ gezogen.
  4. Der Schnittpunkt der beiden Geraden ist der gesuchte Spiegelpunkt $S$.

Wie findet man die Spiegelachse?

Wie können wir die Spiegelachse zwischen einem Punkt $P$ und seinem Bildpunkt $P'$ finden?

Wir beginnen wie bei der Punktspiegelung und zeichnen je einen Kreis um $P$ und $P'$.

Spiegelachse_finden_2
Abbildung: Kreise um die beiden Punkte mit Schnittpunkten

Wir sehen, dass sich die beiden Kreise im Punkt $B$ und $C$ schneiden. Durch diese beiden Punkte ziehen wir nun wieder eine Gerade. Diese Gerade ist die gesuchte Spiegelachse!

$\rightarrow$ SPiegelachse" alt="Spiegelachse_finden_3" src="/assets/courses/media/spiegelachse-finden-3-0-ca.png">
Abbildung: Gerade durch die Schnittpunkte $\rightarrow$ Spiegelachse

Vorgehensweise

Methode

Hier klicken zum Ausklappen
  1. Jeweils einen Kreis um die beiden Punkte zeichnen. Diese beiden Kreise müssen den gleichen Radius haben, der so groß sein muss, dass sich die beiden Kreise schneiden.
  2.  Durch die Schnittpunkte der beiden Kreise wird eine Gerade gezogen. Diese Gerade ist die Spiegelachse!

Mit den Übungsaufgaben kannst du überprüfen, ob du alles richtig verstanden hast zum Konstruieren von einer Spiegelachse und einem Spiegelpunkt. Viel Erfolg dabei!

Multiple-Choice

In welcher Abbildung wurde die Spiegelachse richtig konstruiert?

0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.