abiweb
online lernen

Die perfekte Abiturvorbereitung

Umfang und Flächeninhalt in Rechteck/Quadrat berechnen

Geometrie
Flächeninhalt und Umfang einfacher geometrischer Figuren

Video: Umfang und Flächeninhalt in Rechteck/Quadrat berechnen

Sowohl Rechtecke als auch Quadrate zählen zur Gruppe der Vierecke. Sie unterscheiden sich aber in den Kantenlängen. Bei einem Quadrat sind alle vier Seiten gleich lang. Bei einem Rechteck sind nur die gegenüberliegenden Flächen gleich lang. Am besten lässt sich dieser Unterschied anhand einer Abbildung erklären:

Quadrat (links) und Rechteck (rechts)
Quadrat (links) und Rechteck (rechts)

Ein Quadrat ist also eine besondere Form des Rechtecks, bei dem gilt $a=b$.

Wie berechnet man den Flächeninhalt von Rechtecken?

Die Flächenberechnung funktioniert bei beiden Figuren gleich und kann sowohl geometrisch als auch rechnerisch erfolgen. Bestimmen wir den Flächeninhalt zunächst über die geometrische Methode. Dabei setzen wir das Rechteck auf ein Raster aus einzelnen Quadratzentimetern und addieren die Felder. Jedes einzelne dieser Kästchen ist also 1 cm hoch und lang. Dies würde genauso gut in deinem karierten Matheheft funktionieren. Beachte aber dabei, dass ein Kästchen nicht, wie in diesem Beispiel, einem Quadratzentimeter ($1cm^2$) entspricht, sondern in der Regel $0,25 cm^2$.

Flächeninhalt des Rechtecks
Flächeninhalt des Rechtecks

Zählen wir nun gemeinsam alle einzelnen Kästchen, erhalten wir 8 Kästchen in einer Reihe. Insgesamt liegen vier solcher Reihen aufeinander, wodurch wir auf insgesamt 32 Kästchen kommen.  Die Umrechnung auf Quadratzentimeter ist in diesem Fall sehr einfach: wir erhalten $32 cm^2$.

Bei einfachen Rechtecken lässt sich diese Methode sehr gut anwenden. Um aber auch bei größeren Figuren zu einem Ergebnis zu kommen, ohne die einzelnen Quadratzentimeter zählen und addieren zu müssen, gibt es eine sehr einfache, rechnerische Methode mit der man den Flächeninhalt berechnen kann. Wir haben gesagt, dass jedes einzelne Kästchen eine Kantenlänge von $1 cm$ hat. Die lange, untere Seite muss also 8 cm lang sein. Die Höhe des Rechtecks sind 4 Kästchen, also $4 cm$. Multipliziere ich nun die beiden Kantenlängen miteinander, erhalte ich den Flächeninhalt:

$8 cm \cdot 4 cm = 32cm^2$

Merke

Hier klicken zum Ausklappen

Der Flächeninhalt $A$ eines Rechteckes ergibt sich aus dem Produkt seiner Seitenlängen:

$A=a \cdot b$

Wie berechnet man den Umfang von Rechtecken?

Eine zweite Größe, die man bei Figuren berechnen kann, ist der Umfang. Bei Rechtecken und Quadraten ist auch dies denkbar einfach. Du addierst einfach alle Kantenlängen miteinander. Für das oben gezeigte Rechteck lässt sich also folgender Umfang berechnen:

$U(=Umfang) = 8cm + 4cm +8cm +4cm$

Merke

Hier klicken zum Ausklappen

Der Umfang $U$ eines Rechteckes ergibt sich aus der Addition der Seitenlängen:

$U= 2 \cdot (a + b)$

Wie berechnet man den Flächeninhalt und Umfang bei Quadraten?

Bei Quadraten funktionieren diese Rechnungen genauso, nur dass alle Längen gleich sind.

Der Flächeninhalt $A$ eines Quadrats errechnet sich auch aus dem Produkt der Seitenlängen:

$A=a \cdot a = a^2$

Für den Umfang $U$ eines Quadrats gilt: $U=4\cdot a$

Die simplen Berechnungen für Flächeninhalt und Umfang bei Rechtecken werden wir in den folgenden Beispielen immer wieder benutzen. Bei komplizierteren Formen geht man in der Regel so vor, dass man die Figur in Rechtecke zerlegt, um möglichst einfach auf ein Ergebnis zu kommen.

Berechnungen am Rechteck - Beispiel

Führen wir nun eine Beispielrechnung durch. Versuche die Lösung zunächst selbst zu bestimmen und schau sie dir dann hier an. 

Berechne nun den Umfang (U) und den Flächeninhalt (A) eines Rechtecks. Die Seitenlängen sind dabei $a=6 cm$ und $b=3 cm$

Rechteck: Fläche und Umfang berechnen
Rechteck: Fläche und Umfang berechnen

Beginnen wir mit der Berechnung des Umfangs von unserem Rechteck. Gemäß der Formel, die du ja schon kennengelernt hast, berechnest du den Umfang mit: $2\cdot (a+b)$. Setzen wir in diese Formel nun unsere Werte für a (6 cm) und b (3 cm) ein und du erhältst $U=  2\cdot (6cm+3cm)$. Wenn wir das ausrechnen, bekommen wir $2 \cdot 9cm$ und das ergibt $18cm$. Der Umfang beträgt also $U = 18 cm$.

Als nächstes wollen wir uns mit der Berechnung der Fläche auseinandersetzen. Wir nehmen die bekannte Formel ( A = a $\cdot$ b) und setzen auch hier unsere Werte ein: $A = 6cm\cdot 3cm$. Du erhältst den Flächeninhalt $A = 18 cm^2$. Bist du auf die gleichen Lösungen gekommen?

Teste und vertiefe dein neues Wissen zur Berechnung von Umfang und Flächeninhalt an Rechtecken und QUadraten jetzt auch in den Übungsaufgaben! Viel Erfolg dabei!

Lückentext

Berechne Flächeninhalt und Umfang des Rechtecks über die geometrische und/oder die rechnerische Methode. Ein Kästchen entspricht einem Quadratzentimeter.

Rechteck
Wie groß ist der Flächeninhalt des Rechtecks in Quardatzentimeter?  cm2.   

Wie groß ist der Umfang des Rechecks in Zentimeter ?  cm.
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.