abiweb
online lernen

Die perfekte Abiturvorbereitung

Wie berechnet man Modus und Median?

Video: Wie berechnet man Modus und Median?

Neben dem arithmetischen Mittel helfen uns in der Statistik noch zwei weitere Merkmale, Überblick über unsere Datensätze zu bekommen: der Modus und der Median.

Modus und Median - Überblick

Merke

Hier klicken zum Ausklappen

Modus

Der Modus einer Datenreihe ist der Wert oder auch das Merkmal mit der größten Häufigkeit. Der Modus kann in den meisten Fällen einfach abgelesen werden.

Median

Der Median wird auch Zentralwert genannt und gibt die Mitte einer Datenreihe an, die nach Größe geordnet worden ist. Du kannst also nur dann einen Median berechnen, wenn der Datensatz eine logische Reihenfolge zulässt.

Folgend zeigen wir dir an typischen Aufgaben aus der Mathematik wie du den Modus und Median bzw. Zentralwert berechnen kannst.

Was ist der Modus?

Merke

Hier klicken zum Ausklappen

Der Modus einer Datenreihe ist der Wert oder auch das Merkmal mit der größten Häufigkeit. Der Modus kann in den meisten Fällen einfach abgelesen werden.

In der Jahrgangstufe 8 wurde eine Umfrage zum Thema Bücher durchgeführt. Die Schüler sollten sagen, welches Genre sie am liebsten lesen.

Die Umfrage lieferte folgende Ergebnisse:

Umfrageergebnisse
Umfrageergebnisse

Wir erkennen, dass Krimi das Merkmal mit dem höchsten Wert ist. Das heißt, dass es kein anderes Genre gibt, dass von so vielen Schülern so gerne gelesen wird, wie Kriminalromane. Das Merkmal Krimi ist der Modus. 

In der grafischen Darstellung wird dies noch einmal deutlicher.

Grafische Darstellung der Umfrageergebnisse
Grafische Darstellung der Umfrageergebnisse

In manchen Fällen musst du die Datensätze zunächst selbstständig zusammenfassen, bevor du den Modus bestimmen kannst. Schauen wir uns dazu ein Beispiel zum Berechnen von Schulnoten an:

Beispiel

Hier klicken zum Ausklappen

In einer Klasse wurden folgende Schulnoten geschrieben. Wie lautet der Modus?

Datensatz: Schulnoten
Datensatz: Schulnoten

Wir möchten wissen, welche Note am häufigsten vertreten ist. Dazu ordnen wir die Datenreihe zunächst.

geordneter Datensatz: Schulnoten
geordneter Datensatz: Schulnoten

Wir erkennen, dass die Note $3$ von insgesamt vier Schülern geschrieben wurde - sie ist der Modus. 

Was ist der Median?

Merke

Hier klicken zum Ausklappen

Der Median wird auch Zentralwert genannt und gibt die Mitte einer Datenreihe an, die nach Größe geordnet worden ist. Du kannst also nur dann einen Median ermitteln, wenn der Datensatz eine logische Reihenfolge zulässt.

Einige Beispiele dafür sind:

  • Schulnoten
  • Körpergröße
  • Umfragen mit bestimmtem Frageformat (stark zustimmend, eher zustimmend, eher ablehnend, stark ablehend)

Als Gegenbeispiel kann unser Beispiel der Buch-Umfrage dienen. Die Daten lassen sich in keine logisch aufeinander aufbauende Reihenfolge bringen. Folglich lässt sich auch kein Median bestimmen.  

Für die Ermittlung des Medians gelten folgende Regeln:

Merke

Hier klicken zum Ausklappen

Bei einer ungeraden Anzahl an Daten ist der Median der Wert in der Mitte.

Bei einer geraden Anzahl an Daten ist der Median der Durchschnitt bzw. das arithmetische Mittel der beiden mittleren Werten.

Median berechnen: Ungerade Datenreihe

Beschäftigen wir uns zunächst mit dem Fall, dass die Datenreihe ungerade ist.

Beispiel

Hier klicken zum Ausklappen

Fabian hat sich innerhalb seiner Klasse umgehört, wie lange seine Mitschüler pro Woche an den Hausaufgaben sitzen. Er erhält folgende Daten:

ungerader Datensatz
ungerader Datensatz

Um nun den Median zu ermitteln, müssen die Daten zunächst nach Größe geordnet werden.

ungerader, geordneter Datensatz
ungerader, geordneter Datensatz

Da wir eine ungerade Anzahl an Daten haben, können wir den Median einfach ablesen. Er ist der Wert, der genau in der Mitte liegt, das heißt, dass sowohl rechts als auch links von ihm gleich viele Werte liegen. In diesem Fall ist der Median also $9$.

Median berechnen: Gerade Datenreihe

Im nächsten Beispiel erhalten wir eine gerade Datenreihe mit insgesamt acht Einzelwerten:

Beispiel

Hier klicken zum Ausklappen

Am nächsten Tag kann Fabian auch noch seinen Mitschüler Johannes fragen, der am Vortag krank gewesen war. Fabian erhält eine neue Datenreihe:

gerader Datensatz
gerader Datensatz

Auch diese Daten müssen wir zunächst der Größe nach ordnen.

gerader, geordneter Datensatz
gerader, geordneter Datensatz

Da es bei einer geraden Anzahl keine exakte Mitte gibt, müssen wir das arithmetische Mittel der beiden mittleren Werte nehmen. In diesem Fall sind das die Werte $8$ und $9$.

$Median~=~ \frac{8+9}{2} = 8,5$

Als Median erhalten wir den Wert $8,5$. 

Nun hast du an Beispielen gesehen, wie du den Zentralwert bzw. Median und den Modus in Statistik berechnen kannst. Teste dein neu erlerntes Wissen in unseren Übungsaufgaben! Viel Spaß und Erfolg dabei!

Lückentext

Was ist der Median dieses Datensatzes?

$112, 109, 201, 183, 144$

Der Median des Datensatzes ist .
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.