abiweb
online lernen

Die perfekte Abiturvorbereitung

Wie berechnet man die Standardabweichung und Varianz?

Video: Wie berechnet man die Standardabweichung und Varianz?

In der Statistik existieren drei sogenannte Streuungsparameter, die alle die Verteilung einzelner Werte um den Mittelwert beschreiben. Diese Streuungsparameter sind die Spannweite, die Varianz und die Standardabweichung

Wie berechnet man die Spannweite?

Die Spannweite gibt die Distanz zwischen dem größten und dem kleinsten Messwert an. Da sie nur von diesen beiden Extremwerten abhängt, ist sie anfällig gegenüber sogenannten ausreißenden Werten. Sie wird deshalb vor allem bei kleinen Stichproben bestimmt, um die obere Grenze für die Standardabweichung anzugeben.

Merke

Hier klicken zum Ausklappen

Formel der Spannweite

$R = x_{max} - x_{min}$

Berechnung der Spannweite

1. Werte der Datenreihe in aufsteigender Reihenfolge sortieren

2. Maximalen Wert ermitteln

3. Minimalen Wert ermitteln

4. Spannweite mithilfe der Formel berechnen

Um die Berechnung der Spannweite besser zu verstehen, schauen wir uns ein Beispiel an.

Beispiel

Hier klicken zum Ausklappen

Daniel fragt die Kinder in seiner Nachbarschaft, wie alt sie sind und erstellt aus dieser Befragung folgende Datenreihe.

Datenreihe
Datenreihe

Wir gehen bei der Berechnung der Spannweite nun Schritt-für-Schritt vor. Zunächst müssen wir die Datenreihe vom kleinsten zum größten Wert ordnen.

geordnete Datenreihe mit Maximum und Minimum
geordnete Datenreihe mit Maximum und Minimum

Haben wir die Werte geordnet, können wir die beiden Extremwerte jeweils am Anfang und am Ende der Reihe ablesen.

$x_{min} = 8$

$x_{max} = 17$

Mithilfe dieser Werte lässt sich nun die Spannweite berechnen.

$R = x_{max} - x_{min} = 17 - 8 = 9$

Wie berechnet man die Varianz?

Die Varianz ist die mittlere quadratische Abweichung der Datenreihe von ihrem Mittelwert. Um die Varianz zu berechnen, musst du einem einfachen Schema folgen

Methode

Hier klicken zum Ausklappen

Varianz berechnen - Vorgehensweise 

  1. Berechnung des Durchschnitts
  2. Berechnung der Varianz

Um die Berechnung der Varianz zu verstehen, betrachten wir folgendes Beispiel:

Katrin stoppt fünf Tage lang die Zeit, die sie vom Bahnhof nach Hause benötigt. Sie erhält folgende Datenreihe:

Katrins Datenreihe
Katrins Datenreihe

1. Schritt: Durchschnitt berechnen

Im ersten Schritt berechnen wir den Durchschnitt. Dazu addieren wir die einzelnen Minuten und teilen durch die Anzahl der Tage.

$\Large{\frac{17+12+15+12+14}{5} = 14}$

2. Schritt Varianz berechnen

Um die Varianz zu berechnen, müssen wir nun von allen Einzeldaten den Mittelwert abziehen und das Ergebnis hoch zwei nehmen. Haben wir dies getan, rechnen wir die ganzen Werte wieder zusammen und teilen durch die Anzahl der Tage.

$\Large{\frac{(17-\textcolor{red}{14})^2 + (12-\textcolor{red}{14})^2 + (15-\textcolor{red}{14})^2 + (12-\textcolor{red}{14})^2 + (14-\textcolor{red}{14})^2}{5} = \frac{9+4+1+4}{5} = 3,6}$

Wir teilen also immer durch die Zahl, durch die wir auch geteilt haben, um den Durchschnitt zu berechnen.

Wie berechnet man die Standardabweichung?

Haben wir erst einmal die Varianz berechnet, kommen wir sehr einfach zur Berechnung der Standardabweichung.

Merke

Hier klicken zum Ausklappen

Die Standardabweichung ist die Wurzel der Varianz und wird mit $\sigma$ (Sigma) abgekürzt.

Um für unser Beispiel die Standardabweichung zu berechnen, ziehen wir also einfach die Wurzel aus der Varianz:

$\Large{\sigma = \sqrt[]{3,6} \approx 1,9}$

Was sagt uns die Standardabweichung?

Die Standardabweichung gibt die Streuung der Einzeldaten um den Mittelwert an. Mit ihrer Hilfe können wir sagen, ob ein Durchschnittswert repräsentativ ist. In unserem Beispiel liegt die Standardabweichung zum Durchschnitt (14 Minuten) bei ungefähr 2 Minuten. Katrin benötigt für den Weg vom Bahnhof nach Hause also immer ähnlich lang.

Teste dein neu erlerntes Wissen zur Varianz, Standardabweichung und Co. in unseren Übungsaufgaben! Viel Erfolg und Spaß dabei!

Multiple-Choice

Wie groß ist die Standardabweichung von Julius' Datenreihe?

image




0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.