abiweb
online lernen

Die perfekte Abiturvorbereitung

Was sind Binomische Formeln? - Umgang einfach erklärt

Video: Was sind Binomische Formeln? - Umgang einfach erklärt

Binomische Formeln vereinfachen dir das Rechnen mit komplizierten Termen der Mathematik, in denen, unter anderem, Klammern vorkommen. Alle binomischen Formeln ergeben sich aus den normalen Regeln zum Auflösen von Klammern in Gleichungen und sind somit nicht unbedingt notwendig, wenn man diese beherrscht. Allerdings erleichtern dir die binomischen Formeln das Rechnen und führen schneller zu einer Lösung.

Binome - Definition 

Binome leiten sich von den Polynomen ab. Polynome sind mathematische Ausdrücke, deren Glieder durch Addition und Subtraktion verbunden sind. Diese Glieder können selber Produkte oder Ähnliches sein. Binome bezeichnen Polynome, die zwei Glieder besitzen. Entsprechend gibt es auch sogenannte Trinome, die drei Glieder besitzen und Monome, die nur aus einem Glied bestehen.

Beispiel

Hier klicken zum Ausklappen

Monom

  • $a$
  • $3 \cdot a$

Binom

  • $a+b$
  • $(2 \cdot a) + (5 \cdot b)$

Trinom

  • $a + b + c$
  • $(2 \cdot a) + (5 \cdot b) + (7 \cdot c)$

Polynom

  • $a + b + c + d + e ...$ 
  • $(3 \cdot a) + (9\cdot b) + (5 \cdot c) + (2 \cdot d) + .....$

Merke

Hier klicken zum Ausklappen

Binome sind zweigliedrige Polynome. Ihre allgemeine Form lautet:

$a + b$ oder $a - b$

Binomische Formeln anwenden - Binome vereinfachen

Häufig werden Binome miteinander multipliziert, was in der allgemeinen Form so aussieht:

  • $(a + b) \cdot (a + b) = (a + b)^2$
  • $(a - b) \cdot (a - b) = (a - b)^2$

Um dieses Produkt aufzulösen, helfen dir die binomischen Formeln.

Methode

Hier klicken zum Ausklappen

Mit Hilfe der binomischen Formeln kannst du Produkte aus Binomen umformen.

1. Binomische Formel anwenden

Die erste binomische Formel hilft dir beim Auflösen eines Produkts zweier Binome, die mit einem Pluszeichen verknüpft sind, also einer Summe. 

Merke

Hier klicken zum Ausklappen

1. binomische Formel

$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$

Beispiel

Hier klicken zum Ausklappen

$(5 + x)^2 = 25 + 10 \cdot x + x^2$

2. Binomische Formel anwenden

Die zweite binomische Formel hilft dir beim Auflösen eines Produkts zweier Binome, die mit einem Minuszeichen verknüpft sind, also einer Differenz.

Merke

Hier klicken zum Ausklappen

2. binomische Formel

$(a - b)^2 = a^2 - 2 \cdot a \cdot b + b^2$

Beispiel

Hier klicken zum Ausklappen

$(y - 4)^2 = y^2 - 8 \cdot y + 16$

3. Binomische Formel anwenden

Die dritte binomische Formel findet Anwendung, wenn eine binomische Summe mit einer binomischen Differenz multipliziert wird. Sie ist also eine Mischform aus der ersten und der zweiten binomischen Formel. Die dritte binomische Formel wird auch sehr oft rückwärts angewandt.

Merke

Hier klicken zum Ausklappen

3. binomische Formel

$(a + b) \cdot (a - b) = a^2 - b^2$

Beispiel

Hier klicken zum Ausklappen

$(3 + x) \cdot (3 - x) = 9 - x^2$

$x^2 - 25 = (x + 5) \cdot (x - 5)$

Hier kannst du dir eine Übersichtsseite zu den binomischen Formeln herunterladen.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen! Dabei wünschen wir dir viel Spaß und Erfolg!

Multiple-Choice
Um welche Art von Polynom handelt es sich?

$(4\cdot a) + b + (5 \cdot c)$
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.