abiweb
online lernen

Die perfekte Abiturvorbereitung

Wie funktioniert das Addieren von Potenzen?

Video: Wie funktioniert das Addieren von Potenzen?

Auf dieser Lernseite beschäftigen wir uns mit der Frage, wie Potenzen einer Summe weiter zusammengefasst werden können.

Addition von Potenzen - Gibt es Rechenregeln?

Die Summe zweier normaler Potenzen, wie sie im unteren Beispiel angegeben sind, lässt sich nicht weiter vereinfachen. Wir können das Ergebnis berechnen, indem wir die einzelnen Potenzen auflösen und dann addieren.

Beispiel

Hier klicken zum Ausklappen

$2^3 + 4^2 = (2 \cdot 2 \cdot 2) + (4 \cdot 4) = 8 + 16 = 24$

Die Summe der Potenzen kann nicht weiter zusammengefasst werden. Um das Ergebnis zu berechnen, rechnen wir die einzelnen Potenzen aus und addieren dann die Potenzwerte.

Potenzen addieren - So geht's!

Die Summe von Potenzen lässt sich nur unter folgenden Voraussetzungen zusammenfassen:

  • Die Basen der Potenzen sind gleich.
  • Die Exponenten der Potenzen sind gleich.

Sind diese beiden Bedingungen gleichzeitig erfüllt, kannst du die Summe vereinfachen, indem du die Koeffizienten der Potenzen addierst. Als Koeffizient bezeichnet man die Zahl, die als Faktor vor der Potenz steht.

Merke

Hier klicken zum Ausklappen

Die Summe zweier Potenzen kann zusammengefasst werden, indem die Koeffizienten addiert werden.

$\textcolor{blue}{a} \cdot \textcolor{green}{x^n} + \textcolor{red}{b} \cdot \textcolor{green}{x^n} = (\textcolor{blue}{a} + \textcolor{red}{b}) \cdot \textcolor{green}{x^n}$

Addition von Potenzen - Beispiele

Beispiel

Hier klicken zum Ausklappen

$4 \cdot 2^3 + 7 \cdot 2^3 = (4 + 7) \cdot 2^3 = 11 \cdot 2^3 = 88$

$5 \cdot x^3 + 2 \cdot x^3 = (5 + 2) \cdot x^3 = 7 \cdot x^3$

$6 \cdot x^4 + 4 \cdot x^4 = (6 + 4) \cdot x^4 = 10 \cdot x^4$

$3 \cdot x^6 + 5 \cdot x^6 = (3 + 5) \cdot x^6 = 8 \cdot x^6$

Im folgenden Beispiel taucht eine Potenz auf, die auf den ersten Blick keinen Koeffizienten besitzt. Steht vor der Potenz kein Koeffizient, ist der Koeffizient immer die Zahl $1$.

$ x^7 + x^7 = 1\cdot x^7 + 1\cdot x^7 = (1 + 1) \cdot x^7 = 2 \cdot x^7$

$3 \cdot x^3 +  x^3 = 3\cdot x^3 + 1\cdot x^3 = (3 + 1) \cdot x^3 = 4 \cdot x^3$

$2 \cdot x^5 + 4 \cdot x^5 + x^5 = 2 \cdot x^5 + 4 \cdot x^5 + 1 \cdot x^5$

$= (2 + 4 + 1) \cdot x^5 = 7 \cdot x^5$

Zusammenfassen der Summen von Potenzen - Wann geht es nicht?

1. Potenzen mit unterschiedlichen Exponenten

$4^\textcolor{red}{5} + 4^\textcolor{red}{6}$

$a^\textcolor{red}{m} + a^\textcolor{red}{n} ~~~~ \rightarrow{\textcolor{red}{NICHT~MOEGLICH}}$

2. Potenzen mit unterschiedlichen Basen

$\textcolor{red}{5}^2 + \textcolor{red}{3}^2$

$\textcolor{red}{a}^n + \textcolor{red}{b}^n ~~~~ \rightarrow{\textcolor{red}{NICHT~MOEGLICH}}$

3. Potenzen mit unterschiedlichen Exponenten und unterschiedlichen Basen

$\textcolor{red}{3}^\textcolor{orange}{4} + \textcolor{red}{9}^\textcolor{orange}{3}$

$\textcolor{red}{a}^\textcolor{orange}{n} + \textcolor{red}{b}^\textcolor{orange}{m} ~~~~ \rightarrow{\textcolor{red}{NICHT~MOEGLICH}}$

Teste dein neu erlerntes Wissen zum Addieren von potenzen mit unseren Übungsaufgaben! Wir wünschen dir dabei viel Spaß und Erfolg!

Multiple-Choice
Wie lässt sich diese Summe zusammenfassen?

$3 \cdot x^5 ~+~ 2 \cdot x^5$
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.