abiweb
online lernen

Die perfekte Abiturvorbereitung
in

Musterlösung f

Massenspektroskopie
Äquivalenz von Masse und Energie

Wir benutzen die Formel für die kinetische Energie

$E_{kin}=(m-m_0)\cdot c^2$,

die sich aus der Relativitätstheorie ergibt. Den Wert für die Masse $m$, der sich laut Theorie ergeben müsste, haben wir in Teilaufgabe e berechnet.

$m=2,28\cdot 10^{-30} kg$

$m_0=9,1\cdot 10^{-31} kg$

Hinweis:

Die kinetische Energie ist gerade die Differenz aus Gesamtenergie und Ruheenergie.

Kinetische Energie

Es ergibt sich mit den Messwerten

$E_{kin}=(2,28\cdot 10^{-30} kg- 9,1\cdot 10^{-31} kg)\cdot (3\cdot 10^8 m/s)^2\approx 1,23\cdot 10^{-13} J$

Spannung in der "Elektronenkanone"

Hier ist lediglich der Energiesatz anzuwenden.

Wir haben ja bereits demonstriert, dass die kinetische Energie in der gesamten Anordnung konstant bleibt. Und diese Energie wurde dem Elektron in der Elektronenkanone durch die Spannung $U$ vermittelt. Also gilt nach dem Energiesatz

$E_{kin}=e\cdot U$.

$\Rightarrow U=\frac{E_{kin}}{e}=\frac{1,23\cdot 10^{-13} J}{1,6\cdot 10^{-19} C}\approx 770 kV$

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 20% bei deiner Kursbuchung!

20% Coupon: abitur20

Zu den Online-Kursen