abiweb
online lernen

Die perfekte Abiturvorbereitung
in

Vorüberlegung

Wenn $v_s$ die Schallgeschwindigkeit ist, dann benötigt der Schall eine gewisse Zeit $\Delta t$, um vom Mikrofon $M_1$ zum Mikrofon $M_2$ zu gelangen. Es gilt also

$v_s=\frac{d}{\Delta t}=\lambda\cdot f=\frac{\lambda}{T}$.

Die Zeitverzögerung $\Delta t$ (Phasenverschiebung beider Schwingungen) kann man dem Oszilloskopbild entnehmen und sie beträgt

$\Delta t=\frac{T}{2}$,

wobei die Schwingungsdauer mit $T=\frac{1}{f}$ berechnet werden kann.

Merksatz

Der folgende Merksatz ist bei Analyse von Oszilloskopbildern hilfreich:

Merke

Sind beide Schwingungskurven wie im Bild phasenverschoben, so beträgt die (zeitliche) Phasenverschiebung $\frac{T}{2}$ (dies entspricht $\pi$).

Lösung

$\Rightarrow v_s=\frac{d}{\Delta t}=2\cdot f\cdot d$

Mit $d=8,5 cm$ und $f=1970 Hz$ erhält man

$v_s=334,9 m/s$.

Ergänzung (optional) (zählt nicht zur Lösung!)

Die obige Lösung reicht für die Aufgabe vollständig aus. Die folgende Methode soll lediglich eine Ergänzung zum gründlichen Verständnis des physikalischen Sachverhalts sein.

Methode

Man erinnere sich, dass Wellen mit Hilfe der Wellengleichung dargestellt werden können.

$y(t,x)=A\sin{2\pi(\frac{t}{T}-\frac{x}{\lambda})}$

Das Mikrofon $M_1$ zeichnet die von der Schallwelle verursachte Schwingung an der Stelle $x=0$ auf:

$y(t,x=0)=A\sin{(2\pi\frac{t}{T})}$

Das Mikrofon $M_2$ zeichnet die von der Schallwelle verursachte Schwingung an der Stelle $x=d$ auf:

$y(t,x=d)=A\sin{2\pi(\frac{t}{T}-\frac{d}{\lambda})}=A\sin{(2\pi\frac{t}{T}-2\pi\frac{d}{\lambda})}$

Der zweite Term im Argument ist eine Konstante und stellt im Wesentlichen die Phasenverschiebung dar, die auf dem Oszilloskop erkennbar ist. Denn man kann ja auch folgendes für eine Schwingung schreiben

$y(t)=A\sin{(\omega t+\phi)}$,

worin $\phi$ die Phasenverschiebung ist.

Zeigt das Oszilloskopbild eine Phasenverschiebung $\pi$ an, so hat man in diesem Fall

$2\pi\frac{d}{\lambda}=\pi$,

was letztlich nach Umformung zum Resultat

$d=\frac{\lambda}{2}$

führt.

Nun wissen wir, dass allgemein $v_s=\frac{\lambda}{T}$ gilt. Durchläuft der Schall den Abstand $d=\frac{\lambda}{2}$, so muss er ihn in der Zeit $\Delta t=\frac{T}{2}$ überbrücken, damit am Ende wieder die Geschwindigkeit $v_s$ rauskommt.

Lückentext
Wir verändern nun in einem wieteren Experiment den Abstand $d$ beider Mikrofone.
Nehmen wir an, die beobachtete Zeitverzögerung beider Schwingungen an den Mikrofonen $M_1$ und $M_2$ ist $\Delta t=\frac{T}{3}$.
Wie groß ist der Abstand $d$?


Trage den Wert in cm in die entsprechende Lücke ein.
d= cm
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Man benutze die Resultate aus der Aufgabe. (Wert der Schallgeschwindigkeit und Frequenz)
Runde den cm-Wert auf eine Stelle hinter dem Komma!

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 20% bei deiner Kursbuchung!

20% Coupon: abitur20

Zu den Online-Kursen