abiweb
online lernen

Die perfekte Abiturvorbereitung
in Biologie

Im Kurspaket Biologie erwarten Dich:
  • 123 Lernvideos
  • 515 Lerntexte
  • 1880 interaktive Übungen
  • original Abituraufgaben

kompetetive Hemmung

Prozesse zur ATP-Gewinnung / Enzymatik - Grundlage: Proteinwissen generell / Möglichkeiten der Enzymbeeinflussung

Das optimale Zusammenspiel von Enzym und Substrat ermöglicht eine schnellstmögliche Umsetzung des Substrats.

Liegt die maximale Substratkonzentration vor (Sättigungsbereich der Michaelis-Menten-Kinetik), kann die Wechselzahl bestimmt werden. Die Wechselzahl beschreibt die Anzahl Substratmoleküle, die pro Zeiteinheit umgesetzt werden.

Abhängigkeit der Reaktionsgeschwindigkeit einer Enzymreaktion von der Konzentration des umzusetzenden Substrats. Die Substratkonzentration bei der die halbmaximale Reaktionsgeschwindigkeit erreicht wird, bezeichnet man als Michaelis-Menten-Konstante KM. Der Kurvenverlauf wird mit dem Begriff Sättigungskurve bezeichnet.
Michaelis-Menten-Kinetik

Das Enzym Carboanhydrase kann 600.000 Substrate pro Sekunde umsetzten, Lysozym hingegen nur 30 Substratmoleküle pro Minute. Die Werte für KM und vmax sowie die Wechselzahl sind für ein Enzym und ein Substrat spezifisch.

Wird das optimale Zusammenspiel gestört, spricht man von EnzymHemmung. Hierbei wird die Aktivität des Enzyms durch einen Inhibitor (Hemmstoff) negativ beeinflusst. Die Enzymhemmung kann reversibel oder irreversibel sein. Der Ablauf dieser Hemmung lässt sich wie folgt beschreiben:

  • Das Inhibitormolekül ist der Struktur des Enzymsubstrats sehr ähnlich (= Substratanalogon)
  • Inhibitor bindet im aktiven Zentrum!
  • Das Substratanalogon (= Inhibitor) kann vom Enzym nicht umgesetzt werden und hemmt dadurch die Enzymwirkung
  • Substrat und Inhibitor können nicht gleichzeitig an das Enzym binden, da beide die gleiche Position im Enzym besetzen (aktives Zentrum). Ein Wettbewerb (engl. competition) zwischen dem eigentlichen Substrat und dem Inhibitor setzt ein.
  • Der Inhibitor wird durch Zugabe von hohen Mengen Substrat verdrängt!

Beispiel

Hier klicken zum Ausklappen

Die Alkohol-Dehydrogenase (ADH) baut Ethanol ab, es entsteht Pyruvat, das nun im Stoffwechsel z.B. zur Energiegewinnung verwendet werden kann. Alkohole wie z.B. Methanol binden ebenso an die ADH. Methanol wird in Formaldehyd umgewandelt, was zu Vergiftungen im Körper führt. Der kompetitive Hemmstoff Methanol wird durch Gabe von Ethanol (dem eigentlichen Substrat) verdrängt, die Vergiftung verhindert.

Wie sieht die Kompetitive Hemmung grafisch aus?

Wie in der Michaelis-Menten-Kinetik beschrieben, ist die Geschwindigkeit des Enzyms von der Substratkonzentration abhängig.

Je mehr Substrat vorhanden ist, desto schneller arbeitet eine gegebene Menge Enzym. Die Enzymaktivität wird bis zu einer für jedes Enzym und jedes Substrat spezifischen maximalen Geschwindigkeit (vmax) gesteigert. Eine sogenannte Sättigung wird erreicht (der Graph entspricht einer Sättigungskurve). Alle aktiven Zentren sind mit Substrat besetzt. Erst nach Umsatz dieses Substrats kann das nächste Substratmolekül aufgenommen und umgesetzt werden.

Wie sieht eine Enzymhemmung in der grafischen Darstellung aus? In den folgenden Abbildungen ist immer in BLAU die nicht gehemmt Reaktion gezeigt, in ROT die Reaktion mit Inhibitor.

Der Inhibitor ist sehr ähnlich der Substratstruktur. Beide – Substrat und Inhibitor – haben ihre Bindestelle im aktiven Zentrum. Entsprechend können nicht beide möglichen Bindungspartner gleichzeitig an das Enzym binden!
Es resultieren insgesamt drei Möglichkeiten, wie das Enzym vorliegen kann:

  • als freies Enzym E,
  • als Enzym-Substrat-Komplex ES oder
  • als Enzym-Inhibitor-Komplex EI.

Die Anfangssteigerung der gehemmten Enzymreaktion ist flacher, die Messung betrachtet nur umgesetztes Substrat. Da nun ein Wettbewerb zwischen ES und EI besteht, aber nur ES zu einem messbaren Produkt führt, wird die Enzymreaktion langsamer. Bei steigender Substratkonzentration verdrängt das Substrat den Inhibitor nach und nach. Die enzym- und substratspezifische Maximalgeschwindigkeit wird erreicht!

Situation: Inhibitor ist sehr ähnlich der Subtratstruktur. Beide ? Substrat und Inhibitor ? haben ihre Bindestelle im aktiven Zentrum. Daher können nicht beide möglichen Bindungspartner gleichzeitig an das Enzym binden! Es gibt daher drei Möglichkeiten, wie das Enzym vorliegen kann: Als freies Enzym E, als Enzym-Substrat-Komplex ES oder als Enzym-Inhibitor-Komplex EI. Die Anfangssteigerung der gehemmten Enzymreaktion ist flacher, die Messung betrachtet nur umgesetztes Substrat. Da nun ein Wettbewerb zwischen ES und EI besteht, aber nur ES zu einem messbaren Produkt führt, wird die Enzymreaktion langsamer. Bei steigender Substratkonzentration, verdrängt das Substrat den Inhibitor nach und nach. Die enzym- und substratspezifische Maximalgeschwindigkeit wird erreicht!
Dieser Inhalt ist Bestandteil des Online-Kurses

Stoffwechsel

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundlagen des Stoffwechsels
    • Einleitung zu Grundlagen des Stoffwechsels
    • Grundlagen des Stoffwechsels (Allgemein)
    • Energieumwandlung
      • Einleitung zu Energieumwandlung
      • Wege der Energieumwandlung - Basiswissen Chemie
        • Einleitung zu Wege der Energieumwandlung - Basiswissen Chemie
        • Wasser - das Lebenselexier
        • Kohlenwasserstoffe und funktionelle Gruppen
          • Einleitung zu Kohlenwasserstoffe und funktionelle Gruppen
          • Charakteristischen Reaktionen
      • Zellen und Organellen des Stoffwechsels
    • Fließgleichgewicht und Regulation des Stoffwechsels
    • Stoffwechselregulation
  • Prozesse zur ATP-Gewinnung
    • Einleitung zu Prozesse zur ATP-Gewinnung
    • Enzymatik - Grundlage: Proteinwissen generell
      • Einleitung zu Enzymatik - Grundlage: Proteinwissen generell
      • Aufbau von Proteinen
      • Eigenschaften der Enzyme
        • Einleitung zu Eigenschaften der Enzyme
        • Schlüssel-Schloss-Prinzip
      • Ablauf der Enzymreaktion
      • Möglichkeiten der Enzymbeeinflussung
        • Einleitung zu Möglichkeiten der Enzymbeeinflussung
        • Biokatalysatoren: Einfluss von Temperatur, pH, Salzkonzentration
        • kompetetive Hemmung
        • nicht kompetitive Hemmung
        • allosterische Wechselwirkung
          • Einleitung zu allosterische Wechselwirkung
          • Schwermetalle und Enzymaktivität
      • Einfluss von Hitze auf Enzyme - Ein Experiment
        • Einleitung zu Einfluss von Hitze auf Enzyme - Ein Experiment
        • Beispiele für Enzymreaktionen - Urease
        • Beispiele für Enzymreaktionen - Katalase
      • Enzyme im Alltag
  • Fotosynthese
    • Einleitung zu Fotosynthese
    • Ort der Fotosynthese
      • Einleitung zu Ort der Fotosynthese
      • Chloroplasten: Organelle der Fotosynthese
        • Einleitung zu Chloroplasten: Organelle der Fotosynthese
        • Endosymbionten-Hypothese
    • Primärreaktion der Fotosynthese
      • Einleitung zu Primärreaktion der Fotosynthese
      • Lichtsammelkomplexe
      • Frühe Experimente zur Fotosynthese
      • Experiment: Dünnschicht-Chromatographie (DC) der Blattfarbstoffe
      • Primärvorgänge der Fotosynthese
        • Einleitung zu Primärvorgänge der Fotosynthese
        • Wasserspaltung durch Licht
        • Elektronentransport und Fotophosphorylierung
      • Zyklische Fotophosphorylierung
      • Chemiosmose
        • Einleitung zu Chemiosmose
        • Redoxchemie
      • ATP-Synthase
      • Lichtreaktion auf einen Blick
        • Einleitung zu Lichtreaktion auf einen Blick
        • Lichtreaktion: Weiterverwendung der Endprodukte
    • Sekundärvorgänge der Fotosynthese
      • Einleitung zu Sekundärvorgänge der Fotosynthese
      • C-Körper-Schema des Calvin-Zyklus
      • Autoradiagraphie bringt Licht in die Dunkelreaktion
      • Katalyse: Enzymreaktion am Beispiel der Dunkelreaktion
    • Fotosynthese in Gleichungen
    • Aufklärung der Fotosynthese
    • Fotosynthese und Ökologie
      • Einleitung zu Fotosynthese und Ökologie
      • Abhängigkeit der Fotosyntheserate von Außenfaktoren
        • Einleitung zu Abhängigkeit der Fotosyntheserate von Außenfaktoren
        • Umweltfaktor Licht
        • Umweltfaktor Wasser
      • Fotosynthesevarianten: Anpassung an die Umwelt
      • CAM-Pflanzen
      • C4-Pflanzen
      • Fotosyntheseprodukte der Pflanze -> Bedeutung und Speicherung
      • Zusammenfassung: Fotosynthese
    • Chemosynthese: es funktioniert auch ohne Licht
      • Einleitung zu Chemosynthese: es funktioniert auch ohne Licht
      • autotrophe Assimilation am Beispiel nitrifizierender Bakterien
  • Stoffwechsel vielzelliger Tiere - Wo kommt die Glukose her?
    • Einleitung zu Stoffwechsel vielzelliger Tiere - Wo kommt die Glukose her?
    • Verdauung und Resorption - Verdauungssystem
    • Verdauung und Resorption - Fette
    • Verdauung und Resorption - Proteine und Kohlenhydrate
    • Berechnung des Energieumsatzes
    • Gesundheit und Nahrung
      • Einleitung zu Gesundheit und Nahrung
      • Allergien gegen Nahrungsbestandteile
    • Blut- und Kreislauf
      • Einleitung zu Blut- und Kreislauf
      • Blut das flüssige Organ
      • Erythrozyten
        • Einleitung zu Erythrozyten
        • Sauerstofftransport - Hämoglobin
    • äußere Atmung
      • Einleitung zu äußere Atmung
      • Regulation der Atmung
    • Ausscheidungsprozesse
  • Zellatmung
    • Einleitung zu Zellatmung
    • Glykolyse
    • Oxidative Decarboxylierung
    • Der Citratzyklus
    • Endoxidation - Atmungskette
    • Zellatmung in Gefahr
    • Gesamtsumme des Glukoseabbaus über die Vorgänge der Zellatmung
    • Zellatmung: Abhängigkeit von inneren und äußeren Faktoren
      • Einleitung zu Zellatmung: Abhängigkeit von inneren und äußeren Faktoren
      • Energiebilanz und Regulation der Atmung
      • Regulation des Stoffwechsels
      • Regulation der Phosphofruktokinase (PFK)
    • Pyruvat als Scheitelpunkt: mit oder ohne Sauerstoff?
      • Einleitung zu Pyruvat als Scheitelpunkt: mit oder ohne Sauerstoff?
      • Milchsäuregärung
      • alkoholische Gärung
        • Einleitung zu alkoholische Gärung
        • Experimente zur alkoholischen Gärung
      • heterotrophe Assimilation
    • Zusammenfassung: Zellatmung
      • Einleitung zu Zusammenfassung: Zellatmung
      • Gemeinsamkeiten und Unterschiede bei diesen ATP-produzuierenden Prozessen
  • 92
  • 14
  • 396
  • 92