abiweb
online lernen

Die perfekte Abiturvorbereitung
in Biologie

Im Kurspaket Biologie erwarten Dich:
  • 123 Lernvideos
  • 515 Lerntexte
  • 1880 interaktive Übungen
  • original Abituraufgaben

nicht kompetitive Hemmung

Prozesse zur ATP-Gewinnung / Enzymatik - Grundlage: Proteinwissen generell / Möglichkeiten der Enzymbeeinflussung

Die nichtkompetitive Inhibitorbindung erfolgt weniger spezifisch, verändert aber die Raumstruktur des aktiven Zentrums! Das eigentliche Substrat kann nicht so gut gebunden werden.

  • Inhibitoren sind oft Schwermetalle (Hg2+, Pb2+)
  • Nichtkompetitive Inhibition kann sehr gut zur Regulation von Stoffwechselwegen eingesetzt werden, z.B. bei der Synthese des Isoleucins. Das Endprodukt Isoleucin hemmt das erste Enzym des Stoffwechselweges. Die Isoleucinproduktion wird damit „heruntergefahren”.

Merke

Hier klicken zum Ausklappen

Nichtkompetitive Hemmung: Der Inhibitor bindet außerhalb des aktiven Zentrums bzw. der Substratbindestelle.

Isoleucin-Biosyntheseweg - Die erste Enzymreaktion wird vom Endprodukt gehemmt.
Isoleucin-Biosyntheseweg – die erste Enzymreaktion wird vom Endprodukt gehemmt. Das Endprodukt Isoleucin bindet nichtkompetitiv an das Enzym der ersten Reaktion und hemmt diese.

Wie sieht die nicht-kompetitive Inhibition graphisch aus?

nicht kompetitive Hemmung: Der Inhibitor bindet außerhalb des aktiven Zentrum. Das aktive Zentrum ist frei für das Substrat. Betrachtet man, welche Enzymzustände es gibt, so finden sich das freie Enzym mit Inhibtor (IE) sowie das substratbesetzte Enzym mit Inhibitor (IES). Der Inhibitor bindet unabhängig vom Substrat bzw. der Substratkonzentration  an das Enzym! Damit wird ? durch Veränderung des aktiven Zentrums durch den Einfluss des Inhibitors ? die Geschwindigkeit des Enzyms derart beeinflusst, dass ein ?neuer? Maximalwert erreicht wird, der unter vmax der ungehemmten Enzymreaktion liegt. Die Steigerung der Substratkonzentration führt zum ?gehemmten? Maximalwert, kann aber nie das ?ungehemmte? vmax erreichen!
Nichtkompetitive Hemmung.

Der Inhibitor bindet außerhalb des aktiven Zentrums. Das aktive Zentrum ist frei für das Substrat. Betrachtet man, welche Enzymzustände es gibt, so finden sich das freie Enzym mit Inhibitor (IE) sowie das substratbesetzte Enzym mit Inhibitor (IES). Der Inhibitor bindet unabhängig vom Substrat bzw. der Substratkonzentration an das Enzym! Damit wird – durch Veränderung des aktiven Zentrums durch den Einfluss des Inhibitors – die Geschwindigkeit des Enzyms derart beeinflusst, dass ein „neuer“ Maximalwert erreicht wird, der unter vmax der ungehemmten Enzymreaktion liegt. Die Steigerung der Substratkonzentration führt zum „gehemmten“ Maximalwert, kann aber nie das „ungehemmte“ vmax erreichen.

Enzyme können nicht nur gehemmt, sondern auch positiv beeinflusst werden. Eine solche Aktivierung funktioniert wie die nichtkompetitiven Hemmung, wird aber dann als allosterische Aktivierung oder allosterische Regulation des Enzyms bezeichnet.

Merke

Hier klicken zum Ausklappen

nichtkompetitive Hemmung und allosterische Aktivierung:

in beiden Fällen erfolgt die Bindung von Inhibitor oder Aktivator außerhalb des aktiven Zentrums.

Dieser Inhalt ist Bestandteil des Online-Kurses

Stoffwechsel

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundlagen des Stoffwechsels
    • Einleitung zu Grundlagen des Stoffwechsels
    • Grundlagen des Stoffwechsels (Allgemein)
    • Energieumwandlung
      • Einleitung zu Energieumwandlung
      • Wege der Energieumwandlung - Basiswissen Chemie
        • Einleitung zu Wege der Energieumwandlung - Basiswissen Chemie
        • Wasser - das Lebenselexier
        • Kohlenwasserstoffe und funktionelle Gruppen
          • Einleitung zu Kohlenwasserstoffe und funktionelle Gruppen
          • Charakteristischen Reaktionen
      • Zellen und Organellen des Stoffwechsels
    • Fließgleichgewicht und Regulation des Stoffwechsels
    • Stoffwechselregulation
  • Prozesse zur ATP-Gewinnung
    • Einleitung zu Prozesse zur ATP-Gewinnung
    • Enzymatik - Grundlage: Proteinwissen generell
      • Einleitung zu Enzymatik - Grundlage: Proteinwissen generell
      • Aufbau von Proteinen
      • Eigenschaften der Enzyme
        • Einleitung zu Eigenschaften der Enzyme
        • Schlüssel-Schloss-Prinzip
      • Ablauf der Enzymreaktion
      • Möglichkeiten der Enzymbeeinflussung
        • Einleitung zu Möglichkeiten der Enzymbeeinflussung
        • Biokatalysatoren: Einfluss von Temperatur, pH, Salzkonzentration
        • kompetetive Hemmung
        • nicht kompetitive Hemmung
        • allosterische Wechselwirkung
          • Einleitung zu allosterische Wechselwirkung
          • Schwermetalle und Enzymaktivität
      • Einfluss von Hitze auf Enzyme - Ein Experiment
        • Einleitung zu Einfluss von Hitze auf Enzyme - Ein Experiment
        • Beispiele für Enzymreaktionen - Urease
        • Beispiele für Enzymreaktionen - Katalase
      • Enzyme im Alltag
  • Fotosynthese
    • Einleitung zu Fotosynthese
    • Ort der Fotosynthese
      • Einleitung zu Ort der Fotosynthese
      • Chloroplasten: Organelle der Fotosynthese
        • Einleitung zu Chloroplasten: Organelle der Fotosynthese
        • Endosymbionten-Hypothese
    • Primärreaktion der Fotosynthese
      • Einleitung zu Primärreaktion der Fotosynthese
      • Lichtsammelkomplexe
      • Frühe Experimente zur Fotosynthese
      • Experiment: Dünnschicht-Chromatographie (DC) der Blattfarbstoffe
      • Primärvorgänge der Fotosynthese
        • Einleitung zu Primärvorgänge der Fotosynthese
        • Wasserspaltung durch Licht
        • Elektronentransport und Fotophosphorylierung
      • Zyklische Fotophosphorylierung
      • Chemiosmose
        • Einleitung zu Chemiosmose
        • Redoxchemie
      • ATP-Synthase
      • Lichtreaktion auf einen Blick
        • Einleitung zu Lichtreaktion auf einen Blick
        • Lichtreaktion: Weiterverwendung der Endprodukte
    • Sekundärvorgänge der Fotosynthese
      • Einleitung zu Sekundärvorgänge der Fotosynthese
      • C-Körper-Schema des Calvin-Zyklus
      • Autoradiagraphie bringt Licht in die Dunkelreaktion
      • Katalyse: Enzymreaktion am Beispiel der Dunkelreaktion
    • Fotosynthese in Gleichungen
    • Aufklärung der Fotosynthese
    • Fotosynthese und Ökologie
      • Einleitung zu Fotosynthese und Ökologie
      • Abhängigkeit der Fotosyntheserate von Außenfaktoren
        • Einleitung zu Abhängigkeit der Fotosyntheserate von Außenfaktoren
        • Umweltfaktor Licht
        • Umweltfaktor Wasser
      • Fotosynthesevarianten: Anpassung an die Umwelt
      • CAM-Pflanzen
      • C4-Pflanzen
      • Fotosyntheseprodukte der Pflanze -> Bedeutung und Speicherung
      • Zusammenfassung: Fotosynthese
    • Chemosynthese: es funktioniert auch ohne Licht
      • Einleitung zu Chemosynthese: es funktioniert auch ohne Licht
      • autotrophe Assimilation am Beispiel nitrifizierender Bakterien
  • Stoffwechsel vielzelliger Tiere - Wo kommt die Glukose her?
    • Einleitung zu Stoffwechsel vielzelliger Tiere - Wo kommt die Glukose her?
    • Verdauung und Resorption - Verdauungssystem
    • Verdauung und Resorption - Fette
    • Verdauung und Resorption - Proteine und Kohlenhydrate
    • Berechnung des Energieumsatzes
    • Gesundheit und Nahrung
      • Einleitung zu Gesundheit und Nahrung
      • Allergien gegen Nahrungsbestandteile
    • Blut- und Kreislauf
      • Einleitung zu Blut- und Kreislauf
      • Blut das flüssige Organ
      • Erythrozyten
        • Einleitung zu Erythrozyten
        • Sauerstofftransport - Hämoglobin
    • äußere Atmung
      • Einleitung zu äußere Atmung
      • Regulation der Atmung
    • Ausscheidungsprozesse
  • Zellatmung
    • Einleitung zu Zellatmung
    • Glykolyse
    • Oxidative Decarboxylierung
    • Der Citratzyklus
    • Endoxidation - Atmungskette
    • Zellatmung in Gefahr
    • Gesamtsumme des Glukoseabbaus über die Vorgänge der Zellatmung
    • Zellatmung: Abhängigkeit von inneren und äußeren Faktoren
      • Einleitung zu Zellatmung: Abhängigkeit von inneren und äußeren Faktoren
      • Energiebilanz und Regulation der Atmung
      • Regulation des Stoffwechsels
      • Regulation der Phosphofruktokinase (PFK)
    • Pyruvat als Scheitelpunkt: mit oder ohne Sauerstoff?
      • Einleitung zu Pyruvat als Scheitelpunkt: mit oder ohne Sauerstoff?
      • Milchsäuregärung
      • alkoholische Gärung
        • Einleitung zu alkoholische Gärung
        • Experimente zur alkoholischen Gärung
      • heterotrophe Assimilation
    • Zusammenfassung: Zellatmung
      • Einleitung zu Zusammenfassung: Zellatmung
      • Gemeinsamkeiten und Unterschiede bei diesen ATP-produzuierenden Prozessen
  • 92
  • 14
  • 396
  • 82