abiweb
online lernen

Die perfekte Abiturvorbereitung

Mit Kathetensatz des Euklid rechnen - Regeln einfach erklärt

Geometrie / Satzgruppe des Pythagoras

Der Kathetensatz des Euklid gehört zur Satzgruppe des Pythagoras. Wie der Höhensatz und der Satz des Pythagoras, befasst sich der Kathetensatz mit Berechnungen in rechtwinkligen Dreiecken.

Ausgangspunkt für den Kathetensatz ist der Satz des Pythagoras, laut dem das Hypotenusenquadrat ($c^2$) genauso groß ist wie die Summe der Kathetenquadrate ($a^2$ und $b^2$): $a^2 + b^2 = c^2$

Hinweis

Hier klicken zum Ausklappen

Die längste Seite eines rechtwinkligen Dreiecks heißt Hypotenuse. Die beiden kürzeren Seiten nennt man Katheten.

Satz des Pythagoras
Satz des Pythagoras

Was sagt der Kathetensatz des Euklid aus?

Um zu verstehen, was der Kathetensatz aussagt, benötigen wir die Höhe des Dreiecks. Die Höhe eines rechtwinkligen Dreiecks ist ein Lot, das vom rechten Winkel auf die gegenüberliegende Seite gefällt wird. Die Höhe teilt die Hypotenuse ($c$) in zwei Abschnitte $q$ und $p$.

Kathetensatz des Euklid
Kathetensatz des Euklid

Zeichnen wir die Höhe über das Dreieck hinaus, teilt sie das Hypotenusenquadrat in zwei Rechtecke mit den Flächeninhalten $q\cdot c$ und $p\cdot c$.

Merke

Hier klicken zum Ausklappen

Kathetensatz des Euklid

Das Quadrat von $a$ ist flächeninhaltsgleich zum Rechteck mit den Seiten $p$ und $c$. Das Quadrat von $b$ ist flächeninhaltsgleich zum Rechteck mit den Seiten $q$ und $c$.

  • $b^2 = q \cdot c$
  • $a^2 = p \cdot c$

Richtig gerechnet? - Beweis des Kathetensatzes

Durch das Einzeichnen der Höhe erhalten wir insgesamt drei Dreiecke: Ein Dreieck mit den Seitenlängen $a, b, c$, ein weiteres Dreieck mit den Seitenlängen $h, p, a$ und ein drittes Dreieck mit den Seitenlängen $h, b, q$.

Dreieck mit Höhe
Dreieck mit Höhe

Jedes dieser Dreiecke ist rechtwinklig und daher können wir jeweils den Satz des Pythagoras anwenden:

  • $a^2 + b^2 = c^2$
  • $h^2 + p^2 = a^2$
  • $h^2 + q^2 = b^2$

Außerdem können wir eine weitere Beziehung aufstellen:

  • $q + p = c$

Für den Beweis benötigt man außerdem den Höhensatz des Euklid:

  • $h^2 = p \cdot q$

Beweis: $b^2 = q \cdot  c$

Wir starten mit der Formel für $b^2$:

$b^2 = q^2 + h^2$

Im ersten Schritt ersetzen wir $h^2$ entsprechend dem Höhensatz durch $p \cdot q$.

$b^2 = q^2 + (p \cdot q)$

Die Potenz $q^2$ können wir ausschreiben und erhalten:

$b^2 = (q \cdot q) + (p\cdot q)~~~~~|q~ausklammern$

$b^2 = q \cdot (q + p)$

Für den Klammerterm $(q + p)$ können wir nach der obigen Formel auch $c$ einsetzen.

Hinweis

Hier klicken zum Ausklappen

$q + p = c$

So erhalten wir den uns bekannten Kathetensatz:

$b^2 = q \cdot c$

Beweis: $a^2 = p \cdot c$

Der Beweis ist analog zu der obigen Rechnung, mit dem Unterschied, dass wir mit der Formel für $a^2$ starten:

$a^2 = p^2 + h^2~~~~~|Höhensatz~anwenden:~h^2 = p \cdot q$

$a^2 = p^2 + (p\cdot q)$

$a^2 = (p \cdot p) + (p\cdot q)~~~~~|p~ausklammern$

$a^2 = p \cdot (p + q)~~~~~|c= p + q$

$a^2 = p \cdot c$

Kathetensatz des Euklid anwenden - Beispielaufgabe

Bei einem rechtwinkligen Dreieck sind folgende Längen gegeben: $c =5~cm$ und $p = 2~cm$. Wir sollen die fehlenden Längen $a$ und $b$  berechnen.

Um die gesuchten Seiten mithilfe des Kathetensatzes berechnen zu können, müssen $p$, $q$  und $c$ bekannt sein:

  • $b^2 = q \cdot c$
  • $a^2 = p \cdot c$

Da $p$ und $c$ schon in der Aufgabenstellung gegeben sind, können wir $a$ direkt berechnen:

$a^2 = p \cdot c = 2~cm \cdot 5~cm = 10~cm^2~~~~~|\sqrt[]{}$

$a = \sqrt[]{10~cm^2}$

$a \approx 3,16~cm$

Nun fehlt uns noch die Seite $b$. Um diese Seitenlänge zu berechnen, benötigen wir die Seite $q$.

$c = p + q ~ \leftrightarrow ~ q = c - p ~ \leftrightarrow ~ q = 5~cm - 2~cm = 3~cm$

Jetzt kennen wir $q$ und können $b$ mithilfe des Kathetensatzes berechnen:

$b^2 = q \cdot c = 3~cm \cdot 5~cm = 15~cm^2~~~~~|\sqrt[]{}$

$b = \sqrt[]{15~cm^2}$

$b \approx 3,87~cm$

Teste dein neu erlerntes Wissen zum Kathetensatz des Euklids mit unseren Übungsaufgaben! Wir wünschen dir dabei viel Erfolg und Spaß!