abiweb
online lernen

Die perfekte Abiturvorbereitung

Tangentengleichung aufstellen - 5 Schritte einfach erklärt

Funktionen
Grundlagen zum Thema Funktionen

Video: Tangentengleichung aufstellen - 5 Schritte einfach erklärt

In diesem Lerntext beschäftigen wir uns mit einer Tangente, die an einer Funktion anliegt.

Was ist eine Tangente? - Definition

Eine Tangente ist eine Gerade, die einen Funktionsgraphen an einem Punkt berührt. Dabei ist die Steigung der Tangente die Gleiche wie die Steigung des Berührungspunktes.

tangente
Abbildung: Funktion mit Tangente

Eine Tangente ist eine Gerade und besitzt somit die Gleichung einer linearen Funktion.

Hinweis

Hier klicken zum Ausklappen

Der Name Tangente kommt von dem lateinischen Wort tangere, was berühren bedeutet.

Wir schauen uns jetzt an, wie man Tangentengleichungen bestimmen kann:

Wie bestimmt man eine Tangentengleichung? - Vorgehensweise

Meist ist die Funktion und ein x-Wert gegeben, an dem die Tangente anliegen soll. Eine Tangentengleichung bzw. die Gleichung einer linearen Funktion sieht allgemein so aus:

Hinweis

Hier klicken zum Ausklappen

Tangentengleichung

$f(x) = \textcolor{red}{m}\cdot x + \textcolor{blue}{n}$

$\textcolor{red}{m: Steigung}$
$\textcolor{blue}{n: y-Achsenabschnitt}$

Um die Tangentengleichung zu bestimmen, müssen wir den Wert für die Steigung ($m$) und den Wert für den y-Achsenabschnitt ($n$) herausfinden.

Die Steigung ermitteln wir, indem wir den x-Wert in die erste Ableitung einsetzen. Dann müssen wir noch den y-Achsenabschnitt berechnen. Dafür setzen wir den x-Wert und y-Wert des Berührungspunktes und die Steigung in die Tangentengleichung ein und lösen sie nach $n$ auf.

Hier ist die Vorgehensweise nochmal dargestellt:

Methode

Hier klicken zum Ausklappen

Vorgehensweise Tangente berechnen:

  1. Den x-Wert in die Funktionsgleichung einsetzen, um den dazugehörigen y-Wert zu bestimmen.
  2. Die Funktion ableiten.
  3. Den x-Wert in die Ableitung einsetzen und ausrechnen. $\rightarrow$ Wir erhalten die Steigung.
  4. Die Werte in die allgemeine Gleichung einer linearen Funktion einsetzen und nach $n$ auflösen. $\rightarrow$ Wir erhalten den y-Achsenabschnitt.
  5. Die Tangentengleichung notieren.

Schauen wir uns dies an einem Beispiel an:

Wie bestimmt man eine Tangentengleichung? - Beispielaufgabe

Beispiel

Hier klicken zum Ausklappen

Die Funktion $f(x) = 2x^2-6x+4$ wird von einer Tangente an der Stelle $x=3$ berührt. Bestimme die Tangentengleichung!

1. Wir berechnen den dazugehörigen y-Wert:

$f(3) = 2\cdot 3^2-6\cdot 3+4 = 4$

Der Berührungspunkt ist $P_B(3/4)$

2. Die Funktion wird abgeleitet:

$f(x) = 2x^2-6x+4$

$f'(x) = 4x-6$

3. Um die Steigung an der Stelle $x=3$ zu ermitteln, setzen wir den Wert in die Ableitung ein. Damit erhalten wir die Steigung an der Stelle $x=3$.

$m = f'(3) = 4\cdot 3-6 = 6~~~\rightarrow~~~ \textcolor{red}{m=6}$

An der Stelle $x=3$ hat die Funktion also eine Steigung von ${m=6}$. Willst du nun die Tangentensteigung berechnen, hast du es jetzt leicht. Denn die Steigung eines Graphen in einem Punkt ist gleich der Steigung der Tangente an dem Graphen in diesem Punkt, also auch ${m=6}$.

4. In die allgemeine Gleichung einer Tangente, $t(x) = m \cdot x +n$, setzen wir die zuvor berechneten Werte ein.

$t(x) = 6 \cdot 3 +n = 4$

$18 +n = 4 ~~~~~~|-18$

$\textcolor{blue}{-14 = n}$

5. Setzen wir die Steigung und den y-Achsenabschnitt in die allgemeine Gleichung ein, dann erhalten wir die Tangentengleichung:

$t(x) =\textcolor{red}{ 6} \cdot x \textcolor{blue}{-14}$

Nun hast du gelernt, wie du eine Tangentengleichung aufstellen kannst. Mit den Übungsaufgaben kannst du dein Wissen überprüfen und anwenden. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle

Multiple-Choice
Wie lautet die Tangentengleichung für die Funktion $f(x) = 3x^2+2$ im Punkt $x=1$?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.