abiweb
online lernen

Die perfekte Abiturvorbereitung

Teilweises Wurzelziehen: Wie gehe ich vor?

Video: Teilweises Wurzelziehen: Wie gehe ich vor?

Es gibt viele Fälle, bei denen du durch das Wurzelziehen sehr unübersichtliche Zahlen mit vielen Nachkommastellen erhältst. Um auch solche Wurzeln ausrechnen bzw. vereinfachen zu können, wenden wir das teilweise Wurzelziehen an. Man nennt das teilweise Wurzelziehen auch partielles Radizieren.

3 Wurzeltypen - Überblick

Bevor wir uns die genaue Vorgehensweise des teilweisen Wurzelziehens anschauen, müssen wir zunächst verstehen wo die Unterschiede zwischen diesen einzelnen Typen von Wurzeln liegen:

Merke

Hier klicken zum Ausklappen

Diese 3 Typen von Wurzeln unterscheiden wir:

  1. Vollständig-ziehbare Wurzeln
  2. Nicht-ziehbare Wurzeln
  3. Teilweise-ziehbare Wurzeln

Diese Wurzeltypen schauen wir uns jetzt nach uns nach gemeisnam an und arbeiten Merkmale und Unterschiede heraus. Außerdem lernst du, was du beim teilweisen Wurzelziehen jeweils beachten musst.

Vollständig-ziehbare Wurzeln

Vollständig-ziehbare Wurzeln ergeben eine glatte Zahl. Allgemein kann man sagen, dass Wurzeln vollständig ziehbar sind, wenn der Exponent unter der Wurzel ein Vielfaches des Wurzelexponenten ist.

$\sqrt[2]{256} = \sqrt[2]{4^4}$

Die Zahl unter der Wurzel lässt sich als Potenz mit dem Exponenten $4$ schreiben. Der Exponent ist also ein Vielfaches des Wurzelexponenten ($2$) und somit ist die Wurzel vollständig ziehbar.

Merke

Hier klicken zum Ausklappen

Eine Wurzel ist vollständig ziehbar, wenn der Wert unterhalb der Wurzel als eine Potenz geschrieben werden kann, deren Exponent ein Vielfaches des Wurzelexponenten ist.

$\sqrt[2]{a^2}$$\sqrt[2]{a^6}$

$\sqrt[3]{a^3}$$\sqrt[3]{a^9}$

Beispiel

Hier klicken zum Ausklappen

$\sqrt[2]{16} = \sqrt[2]{4^2} = 4$

$\sqrt[2]{36} = \sqrt[2]{6^2} = 6$

$\sqrt[3]{125} = \sqrt[3]{5^3} =  5$

Nicht-ziehbare Wurzeln

Eine Wurzel ist nicht ziehbar, wenn der Exponent der Potenz unter der Wurzel kein Vielfaches des Wurzelexponenten und kleiner als der Wurzelexponent ist.

$\sqrt[3]{16} = \sqrt[3]{4^2}$

Du siehst, dass der Wert des Exponenten weder größer als der Wurzelexponent noch ein Vielfaches des Wurzelexponenten ist. 

Merke

Hier klicken zum Ausklappen

Eine Wurzel ist nicht-ziehbar, wenn der Exponent der Potenz unter der Wurzel kein Vielfaches des Wurzelexponenten und kleiner als der Wurzelexponent ist.

$\sqrt[2]{a}$ , $\sqrt[3]{a^2}$

Beispiel

Hier klicken zum Ausklappen

Nicht-ziehbare Wurzeln

$\sqrt{29} \approx 5,38$

$\sqrt{23} \approx 4,79$

$\sqrt{67} \approx 8,18$

Teilweise-ziehbare Wurzeln

Teilweise-ziehbare Wurzeln sind ein, für uns entscheidender, Sonderfall. Sie zeichnen sich dadurch aus, dass der Exponent der Potenz unter der Wurzel zwar kein Vielfaches des Wurzelexponenten ist, aber größer als der Wurzelexponent ist.

Merke

Hier klicken zum Ausklappen

Eine Wurzel ist teilweise-ziehbar, wenn der Exponent der Potenz unter der Wurzel größer als der Wurzelexponent ist, jedoch kein Vielfaches des Wurzelexponenten ist.

$\sqrt[2]{a^5}$$\sqrt[3]{a^8}$

Teilweises Wurzelziehen - Vorgehen

Beim teilweisen Wurzelziehen zerlegst du die teilweise-ziehbare Wurzel in einen ziehbaren und einen nicht-ziehbaren Teil. Das bedeutet, dass du den Radikand unter der Wurzel in ein Produkt aus zwei Zahlen zerlegst. Von einer dieser Zahlen musst du die Wurzel ziehen können.

$\sqrt{44} = \sqrt{4 \cdot 11}$

Methode

Hier klicken zum Ausklappen

Faktoren unter der Wurzel

$\sqrt{a\cdot b} = \sqrt{a} \cdot \sqrt{b} $

$\sqrt{44} = \sqrt{4 \cdot 11} = \sqrt{4} \cdot \sqrt{11} = 2\cdot \sqrt{11}$

Wie du siehst, haben wir die teilweise-ziehbare Wurzel in ein Produkt aus einer ganzen Zahl und einer nicht-ziehbaren Wurzel umgeformt.

Beispiel

Hier klicken zum Ausklappen

Teilweises Wurzelziehen

$\sqrt{45} = \sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3 \cdot \sqrt{5}$

$\sqrt{8} = \sqrt{4 \cdot 2} = \sqrt{4} \cdot \sqrt{2} = 2 \cdot \sqrt{2}$

$\sqrt[5]{128} = \sqrt[5]{2^5 \cdot 2^2} = \sqrt[5]{2^5} \cdot \sqrt[5]{2^2} = 2 \cdot \sqrt[5]{4}$

Teste dein neu erlerntes Wissen zum teilweisen Wurzelziehen jetzt mit unseren Übungsaufgaben! Viel Erfolg dabei!

Multiple-Choice
Welche Wurzel ist eine nicht-ziehbare Wurzel?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.