abiweb
online lernen

Die perfekte Abiturvorbereitung

Multiplizieren und Dividieren von Wurzeln

Video: Multiplizieren und Dividieren von Wurzeln

Ähnlich wie Potenzen können auch Wurzeln multipliziert oder dividiert werden. Dazu musst du nur einige wenige Regeln beachten.

Beim Multiplizieren und Dividieren müssen wir zwei Typen von Wurzeln unterscheiden:

  • gleichnamige Wurzeln und
  • ungleichnamige Wurzeln.

Hinweis

Hier klicken zum Ausklappen

Gleichnamige Wurzeln sind Wurzeln, deren Wurzelexponenten gleich sind.

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{n}]{b}$ 

Bsp.: $\sqrt[\textcolor{red}{3}]{4}$ und $\sqrt[\textcolor{red}{3}]{6}$ 

Ungleichnamige Wurzeln sind Wurzeln, deren Wurzelexponenten nicht gleich sind.

$\sqrt[\textcolor{red}{n}]{a}$ und $\sqrt[\textcolor{red}{m}]{b}$

Bsp.: $\sqrt[\textcolor{red}{3}]{4}$ und $\sqrt[\textcolor{red}{4}]{6}$

Wenn du nur eine einzige Wurzel betrachtest, kannst du nicht sagen, ob sie gleichnamig oder ungleichnamig ist, weil du dafür immer eine zweite Wurzel benötigst.

Hinweis

Hier klicken zum Ausklappen

Die Radikanden spielen bei diesen Begriffen keine Rolle und können sowohl gleich als auch unterschiedlich sein.

Multiplikation von gleichnamigen Wurzeln 

Das Multiplizieren gleichnamiger Wurzeln ist denkbar einfach. Du musst nur die Zahlen unterhalb der Wurzel miteinander multiplizieren und unter einer Wurzel zusammenfassen:

$\sqrt{\textcolor{blue}{50}} \cdot \sqrt{\textcolor{red}{2}} = \sqrt{\textcolor{blue}{50} \cdot \textcolor{red}{2}} = \sqrt{100}$

Wenn die Wurzeln Koeffizienten besitzen, musst du auch diese multiplizieren und vor die Wurzel schreiben.

$(\textcolor{blue}{3} \cdot \sqrt{\textcolor{blue}{50}}) \cdot (\textcolor{red}{5} \cdot \sqrt{\textcolor{red}{2}}) = \textcolor{blue}{3} \cdot \textcolor{red}{5} \cdot \sqrt{\textcolor{blue}{50} \cdot \textcolor{red}{2}} = 15 \cdot \sqrt{100}$

Merke

Hier klicken zum Ausklappen

Gleichnamige Wurzeln werden multipliziert, indem die Radikanden miteinander multipliziert werden und zusammen unter eine Wurzel geschrieben werden.

$\sqrt[n]{\textcolor{blue}{a}} \cdot \sqrt[n]{\textcolor{red}{b}} = \sqrt[n]{\textcolor{blue}{a} \cdot \textcolor{red}{b}}$

Beispiel

Hier klicken zum Ausklappen

$\sqrt[3]{15} \cdot \sqrt[3]{9} = \sqrt[3]{15 \cdot 9} = \sqrt[3]{135}$

$\sqrt[5]{123} \cdot \sqrt[5]{12} = \sqrt[5]{123 \cdot 12} = \sqrt[5]{1476}$

$\sqrt{9} \cdot \sqrt{36} = \sqrt{9 \cdot 36} = \sqrt{324}$

Multiplikation von ungleichnamigen Wurzeln

Ungleichnamige Wurzeln können zunächst nicht multipliziert werden. Um sie multiplizieren zu können, müssen sie gleichnamig gemacht werden, das heißt, sie müssen denselben Wurzelexponenten haben.

$\sqrt[\textcolor{red}{3}]{20} \cdot  \sqrt[\textcolor{red}{5}]{32}~~~~~NICHT~MOEGLICH$

Um aus ungleichnamigen Wurzeln gleichnamige zu machen, müssen wir den Wurzelexponenten erweitern.

Hinweis

Hier klicken zum Ausklappen

Du weißt nicht genau, wie man Wurzelexponenten erweitert? Für dieses Thema bieten wir einen eigenständigen Lerntext an. Wenn du noch Probleme mit dieser Methode hast, schaue dort nach!

$(\sqrt[\textcolor{red}{3}]{20}) \cdot  (\sqrt[\textcolor{red}{5}]{32}) \rightarrow (\sqrt[\textcolor{red}{3} \cdot 5]{20^5}) \cdot  (\sqrt[\textcolor{red}{5} \cdot 3]{32^3}) = (\sqrt[\textcolor{red}{15}]{20^5}) \cdot  (\sqrt[\textcolor{red}{15}]{32^3}) = \sqrt[\textcolor{red}{15}]{(20^5) \cdot (32^3)}$

Merke

Hier klicken zum Ausklappen

Ungleichnamige Wurzeln werden multipliziert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Division von gleichnamigen Wurzeln

Auch das Dividieren von gleichnamigen Wurzeln folgt einem einfachen Prinzip. Ähnlich wie bei der Multiplikation kannst du die beiden Radikanden durcheinander teilen und unter eine gemeinsame Wurzel schreiben.

$\frac{\sqrt{\textcolor{blue}{16}}}{\sqrt{\textcolor{red}{8}}} = \sqrt{\frac{\textcolor{blue}{16}}{\textcolor{red}{8}}} = \sqrt{2}$

Merke

Hier klicken zum Ausklappen

Gleichnamige Wurzeln werden dividiert, indem der Quotient aus den beiden Radikanden unter eine Wurzel geschrieben wird.

$\frac{\sqrt[n]{\textcolor{blue}{a}}}{\sqrt[n]{\textcolor{red}{b}}} = \sqrt[n]{\frac{\textcolor{blue}{a}}{\textcolor{red}{b}}}$

Beispiel

Hier klicken zum Ausklappen

$\frac{\sqrt[3]{15}}{\sqrt[3]{3}} = \sqrt[3]{\frac{15}{3}} = \sqrt[3]{5}$

$\frac{\sqrt{44}}{\sqrt{11}} = \sqrt{\frac{44}{11}} = \sqrt{4}$

$\frac{\sqrt[5]{256}}{\sqrt[5]{4}} = \sqrt[5]{\frac{256}{4}} = \sqrt[5]{64}$

Division von ungleichnamigen Wurzeln

Ungleiche Wurzeln können zunächst nicht dividiert werden. Genau wie beim Multiplizieren kannst du aber auch hier den Wurzelexponenten erweitern:

$\frac{\sqrt[2]{20}}{\sqrt[3]{9}} \rightarrow \frac{\sqrt[2 \cdot 3]{20^3}}{\sqrt[3 \cdot 2]{9^2}} = \frac{\sqrt[6]{8000}}{\sqrt[6]{81}} = \sqrt[6]{\frac{8000}{81}}$

Merke

Hier klicken zum Ausklappen

Ungleichnamige Wurzeln werden dividiert, indem sie zunächst durch die Erweiterung des Wurzelexponenten gleichnamig gemacht werden. 

Dein neu erlerntes Wissen kannst du nun mit unseren Übungsaufgaben testen! Viel Erfolg dabei!

Multiple-Choice
Welche Wurzeln lassen sich ohne Umformung direkt miteinander multiplizieren?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.