abiweb
online lernen

Die perfekte Abiturvorbereitung

Flächeninhalt berechnen - Schritte einfach erklärt

Geometrie
Einfache geometrische Figuren und Körper

Video: Flächeninhalt berechnen - Schritte einfach erklärt

 Die Geometrie ist ein großer Bereich in der Mathematik. Sie befasst sich mit allen Figuren und Körpern, sei es ein Rechteck, ein Dreieck oder auch eine Kugel. In diesem Kapitel wollen wir den Einstieg in die Geometrie wagen und schauen uns die ersten geometrischen Figuren und eine wichtige Größe, den Flächeninhalt, an. Dazu erklären wir auch den Begriff Fläche genauer.

Was bedeutet Flächeninhalt?

Der Flächeninhalt ist eine der ersten Größen in der Geometrie, die du ermitteln sollst. Hierfür werden dir verschiedene geometrische Figuren gegeben, deren Flächeninhalt zu errechnen ist. Doch was genau ist der Flächeninhalt einer Figur?

Jede geometrische Figur hat gewisse Maße, die sie begrenzen. In der nächsten Abbildung siehst du ein Viereck, welches genau $6$ cm lang und $4$ cm hoch ist. Wenn du wissen willst, wie groß die Fläche ist, die diese Figur bedeckt, benötigst du den Flächeninhalt.

Merke

Hier klicken zum Ausklappen

Die Fläche ist der Bereich, den eine Figur einnimmt. Errechnet wird die Fläche über den Flächeninhalt.

Der Flächeninhalt bezeichnet also den Bereich, die eine Figur einnimmt.

$6 \;$ cm und einer $4 \;$ cm langen Seite" alt="Rechteck 6 x 4" src="/assets/courses/media/rechteck-flaeche-ca.png">
Rechteck mit einer $6$ cm und einer $4$ cm langen Seite.

Wie berechnet man den Flächeninhalt eines Rechtecks?

Der Flächeninhalt eines Rechteckes lässt sich durch das Multiplizieren der beiden Seitenlängen ermitteln. In unserem Beispiel ist das also $6 \cdot 4 \;$, was $24$ ergibt. Da wir zwei Werte multiplizieren, muss auch die Einheit multipliziert werden und aus $cm$ wird $cm^2$. Also Lösung für den Flächeninhalt des Beispielrechtecks erhalten wir somit $24cm^2$ und die Aufgabe ist fertig bearbeitet.

Merke

Hier klicken zum Ausklappen

Der Flächeninhalt (A) eines Rechtecks errechnet sich durch die Multiplikation der Grundseite mit der Höhe. Die Höhe muss dabei immer senkrecht auf der Grundseite stehen. Bei einem Parallelogramm ist die Höhe also noch zu ermitteln.

$Flächeninhalt \; = \; Länge\; \cdot \; Höhe$

$A \; = \; g \; \cdot \; h$

Diese Formel gilt für alle regelmäßigen Rechtecke, somit auch für das Parallelogramm und das Quadrat.

Doch die Formel für den Flächeninhalt eines Rechteckes ist nicht dieselbe wie für andere Figuren. So hat beispielsweise das Dreieck eine andere Formel. Dennoch bietet die Formel für den Flächeninhalt des Rechtecks die Basis für den Flächeninhalt weiterer geometrischer Figuren.

Zur Vertiefung dieses Themas schau auch noch einmal in die Übungen!

Multiple-Choice

Berechne den Flächeninhalt eines Rechtecks mit einer $5\;cm$ Grundseite und einer $2 \; cm $ Höhe.

0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.