abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 168 Lernvideos
  • 416 Lerntexte
  • 592 interaktive Übungen
  • original Abituraufgaben

Ebenen in der analytischen Geometrie

Nachdem einige Kapitel zuvor Geraden im Dreidimensionalen beschrieben wurden, wenden wir uns jetzt den Ebenen zu. Nachdem wir mit Geraden im Zweidimensionalen schon lange umgehen ("$y=m \cdot x + c$"), begegnen uns mit Ebenen die ersten wirklich neuen Figuren. Für diese ist die räumliche Umgebung zwingend notwendig, erst dann können wir sie in all ihren Eigenschaften und ihrer ganzen (unendlich weiten) Ausdehnung erfassen.

Zur Beschreibung von Ebenen gibt es in der Analytischen Geometrie verschiedenste Formen. Drei davon lernen wir im Folgenden kennen:

  1. die Parameterform, die einen Punkt der Ebene und zwei Richtungsvektoren benötigt
  2. die Normalenform, die - wie der Name schon sagt - mit einem zur Ebene orthogonalen Vektor arbeitet
  3. die Koordinatenform, die in ihrer Darstellung am ehesten an die Analysis erinnert.

Da jede Darstellungsform ihre Stärken in anderen Aufgabenbereichen hat können wir sie natürlich auch ineinander umformen und uns so das jeweils nötige mathematische Rüstzeug bereitstellen.

Zwar ist nicht in jedem Bundesland zwingend auch jede Darstellungsform verlangt. Dennoch werden hier alle vorgestellt, da jede der drei bei bestimmten Rechenoperationen Vorteile bringt.

Dieser Inhalt ist Bestandteil des Online-Kurses

Analytische Geometrie / Lineare Algebra (Agla)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung und Grundlagen
    • Einleitung zu Einleitung und Grundlagen
    • Koordinatensystem
    • Was sind Vektoren?
    • Begriff des Vektorraums
    • Vektorraum - Basis und Dimension
  • Rechnen mit Vektoren
    • Einleitung zu Rechnen mit Vektoren
    • Addition und Subtraktion von Vektoren
    • Vektor zwischen zwei Punkten
    • Betrag eines Vektors berechnen
    • Vielfache von Vektoren bilden
    • Linearkombination von Vektoren
    • Lineare (Un-)Abhängigkeit von Vektoren
  • Geraden
    • Einleitung zu Geraden
    • Aufstellen einer Geradengleichung
    • Eine Gerade - viele Gleichungen?
    • Lage von Geraden
    • Schnitte von Geraden
  • Weitere Rechenoperationen mit Vektoren
    • Einleitung zu Weitere Rechenoperationen mit Vektoren
    • Normierung eines Vektors
    • Skalarprodukt zweier Vektoren
    • Vektoren und Winkel
    • Vektorprodukt / Kreuzprodukt
  • Ebenen in der analytischen Geometrie
    • Einleitung zu Ebenen in der analytischen Geometrie
    • Aufstellen von Ebenen in Parameterform
    • Normalenform einer Ebene
    • Koordinatenform einer Ebene
    • Darstellung einer Ebene im Koordinatensystem
    • Ebenengleichungen umwandeln
    • Hessesche Normalenform
  • Lagebeziehungen und Abstände
    • Einleitung zu Lagebeziehungen und Abstände
    • Lagebeziehungen von Punkten, Geraden und Ebenen
    • Abstandsprobleme
      • Einleitung zu Abstandsprobleme
      • Abstände von Punkten
      • Abstände von Geraden
      • Abstände von Ebenen
  • Schnitte
    • Einleitung zu Schnitte
    • Schnitt Gerade-Gerade
    • Schnitt Ebene-Gerade
    • Schnitt Ebene-Ebene
  • Spiegelungen
    • Einleitung zu Spiegelungen
    • Spiegelung an einem Punkt
    • Spiegelung an einer Geraden
    • Spiegelung an einer Ebene
  • Lineare Gleichungssysteme
    • Einleitung zu Lineare Gleichungssysteme
    • Was ist ein Lineares Gleichungssystem (LGS)?
    • Lösen eines linearen Gleichungssystems
      • Einleitung zu Lösen eines linearen Gleichungssystems
      • Allgemeine Vorgehensweise zur Lösung eines linearen Gleichungssystems
      • Gauß-Verfahren
      • Lösungsmöglichkeiten
  • Matrizen
    • Einleitung zu Matrizen
    • Darstellung in Matrizenform
    • Besondere Matrizen
      • Einleitung zu Besondere Matrizen
      • Einheitsmatrix
      • Dreiecksmatrix
      • Inverse Matrix
  • Rechenregeln für Matrizen
    • Einleitung zu Rechenregeln für Matrizen
    • Addition von Matrizen
    • Vervielfachen von Matrizen
    • Multiplikation von Matrizen
    • Zusammenfassung Matrizen
  • Anwendungen von Matrizen
    • Einleitung zu Anwendungen von Matrizen
    • Verflechtungsmatrizen
      • Einleitung zu Verflechtungsmatrizen
      • Beschreibung Verflechtungsmatrix
      • Anwendungsbeispiel Verflechungsmatrix
      • Mehrstufige Prozesse
    • Übergangsmatrizen
      • Einleitung zu Übergangsmatrizen
      • Beschreibung
      • Zustandsvektoren
      • Fixvektor
  • 69
  • 20
  • 196
  • 69