abiweb
online lernen

Die perfekte Abiturvorbereitung

Linearfaktorzerlegung anwenden - Schritte einfach erklärt

Terme und Gleichungen / Quadratische Gleichungen lösen

Eine quadratische Gleichung kann in ihre Linearfaktoren zerlegt werden. Wie der Name Faktor schon sagt, wird die quadratische Gleichung dabei in ein Produkt umgeformt. Die allgemeine Form einer quadratischen Gleichung $ax^2+bx+c=0$ kann also in die Produktform $a\cdot (x-x_1)\cdot (x-x_2)=0 $ überführt werden.

Merke

Hier klicken zum Ausklappen

Bei der Zerlegung in Linearfaktoren wird der quadratische Term in ein Produkt umgeformt:

$ax^2+bx+c ~~~\rightarrow~~~a\cdot (x-x_1)\cdot (x-x_2)$

$x_1$ und $x_2$ sind die Lösungen der quadratischen Gleichung $ax^2+bx+c=0$ und

$(x-x_1)$ und $(x-x_2)$ sind die beiden Linearfaktoren.

$x_1$ und $x_2$ sind dabei die Nullstellen der quadratischen Funktion $f(x)=ax^2+bx+c$ bzw. die Lösungen der quadratischen Gleichung $ax^2+bx+c=0$. Diese können wir entweder mit der p-q-Formel, der Mitternachtsformel oder auch mit dem Satz von Vieta bestimmen.

Schauen wir uns ein Beispiel an:

Linearfaktorzerlegung anwenden - Beispiele

Beispiel

Hier klicken zum Ausklappen

Die folgenden quadratischen Gleichungen sollen in ihre Linearfaktoren zerlegt werden.

Beispiel 1:

 $x^2+3x-4=0$ 

Als erstes berechnen wir mit der p-q-Formel die Nullstellen:

$x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

$x^2 \textcolor{red}{+3} \cdot x \textcolor{orange}{-4} = 0$

$x_{1/2} = -\frac{\textcolor{red}{3}}{2}\pm \sqrt{(\frac{\textcolor{red}{3}}{2})^2-\textcolor{orange}{-4})}$

$x_{1/2} = -1,5\pm \sqrt{(\frac{9}{4} + 4)}$

$x_{1/2} = -1,5\pm \sqrt{6,25}= -1,5 \pm 2,5$

$x_1= 1$

$x_2 = -4$

Daraus ergeben sich die Linearfaktoren:

$x-1$    und    $x+4$

Die Quadratische Gleichung bzw. Funktion kann sowohl in der Normalform geschrieben werden als auch in der Produktform:

$x^2+3x-4 = 0 ~~\leftrightarrow~~(x-1)\cdot (x+4)=0$

$f(x)=x^2+3x-4~~\leftrightarrow~~f(x)=(x-1)\cdot (x+4)$

 

Beispiel 2:

$f(x)=2x^2-4x-16$

Zunächst setzen wir diese Funktion gleich Null:

$2x^2-4x-16=0$

Anschließend muss der Faktor $\textcolor{turquoise}{a}$ vor unserem $\textcolor{blue}{x^2}$ eliminiert werden, da sonst die p-q-Formel nicht angewendet werden kann. Dazu dividieren wir die Gleichung durch die Zahl 2:

$\textcolor{turquoise}{2}\textcolor{blue}{x^2}-4x-16=0 |:\textcolor{turquoise}{2}$

$x^2-2x-8=0$

Anschließend berechnen wir mit der p-q-Formel die Nullstellen:

$x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

$x^2 \textcolor{red}{-2} \cdot x \textcolor{orange}{-8} = 0$

$x_{1/2} = -\frac{\textcolor{red}{-2}}{2}\pm \sqrt{(\frac{\textcolor{red}{-2}}{2})^2-\textcolor{orange}{-8})}$

$x_{1/2} = 1\pm \sqrt{(1) + 8}$

$x_{1/2} = 1\pm \sqrt{9}= 1 \pm 3$

$x_1= 4$

$x_2 = -2$

Daraus ergeben sich die Linearfaktoren:

$x-4$    und    $x+2$

Die Quadratische Gleichung bzw. Funktion kann sowohl in der Normalform geschrieben werden als auch in der Produktform:

$2x^2-4x-16=0~~\leftrightarrow~~x^2-2x-8 = 0 ~~\leftrightarrow~~(x-4)\cdot (x+2)=0$

$f(x)=2x^2-4x-16~~\leftrightarrow~~f(x)=2\cdot (x-4)\cdot (x+2)$

Wie geht man bei der Linearfaktorzerlegung vor? - 4 Schritte auf einen Blick

Im Folgenden fassen wir nun nochmal kurz zusammen, wie du eine quadratische Gleichung in ihre Linearfaktoren zerlegen kannst. Die Vorgehensweise ist nicht schwer. Außerdem kannst du dein Ergebnis am Ende der Rechnung durch eine weitere einfache Rechnung überprüfen.

Methode

Hier klicken zum Ausklappen
  1. Die Nullstellen der quadratischen Gleichung bestimmen.
  2. Die beiden Linearfaktoren notieren: $(x-x_1)$ und $(x-x_2)$
  3. Die Nullstellen in die Form $ (x-x_1)\cdot (x-x_2)$ einsetzen.
  4. Mache eine Probe: Löse die Multiplikation auf und du erhältst die anfangs gegebene Normalform der quadratischen Gleichung.

Wie wende ich die Linearfaktorzerlegung an?

Mithilfe der Linearfaktorzerlegung können wir die Normalform einer quadratischen Funktion aufstellen. Auch komplexe Brüche lassen sich mithilfe der Linearfaktorzerlegung kürzen.

Aufstellen der Normalform

Wenn wir die Nullstellen einer Funktion gegeben haben, können wir mithilfe der Linearfaktoren ganz einfach eine Funktionsgleichung aufstellen. Diese können wir dann in die Normalform überführen, indem wir die Klammern ausmultiplizieren.

Beispiel

Hier klicken zum Ausklappen

Die Nullstellen der Funktion sind $-5$ und $1$.

Wir können die Funktionsgleichung mithilfe von Linearfaktoren schreiben:

$ (x-x_1)\cdot (x-x_2) $

$ f(x)=(x-(-5))\cdot (x-1) $

$ f(x)=(x+5)\cdot (x-1) $

Wenn wir die Funktionsgleichung nun in die Normalform überführen wollen, müssen wir lediglich die Klammern ausmultiplizieren (auflösen):

$f(x)= x\cdot x +x\cdot (-1) +5\cdot x +5\cdot (-1)$

$f(x)= x^2-x+5x-5$

$f(x)= x^2+4x-5$

Kürzen von Brüchen

Komplexe Brüche lassen sich mithilfe der Linearfaktorzerlegung vereinfachen.

Beispiel

Hier klicken zum Ausklappen

Folgender Bruch ist gegeben:

$\large{\frac{x^2+4x-5}{x^2+x-2}}$

Bei diesem Bruch können wir nicht kürzen, da wir sowohl im Zähler als auch im Nenner jeweils eine Summe haben. ("In Summen kürzen nur die Dummen.") Daher zerlegen wir beide Funktionen in ihre Linearfaktoren.

Für den Zähler haben wir dies oben schon gemacht:

$x^2+4x-5~~~ \rightarrow~~~ (x+5)\cdot (x-1)$

Um die Nullstellen der unteren Funktion zu ermitteln, wenden wir bei dieser Aufgabe den Satz von Vieta an, da die Zahlenkombination sehr einfach ist. Die Aufgabe kann jedoch auch mit der p-q-Formel gelöst werden.

$1\cdot x^2+ \textcolor{red}{1}\cdot x\textcolor{blue}{-2}$

$x_1+x_2 = -\textcolor{red}{1}$

$x_1\cdot x_2 = \textcolor{blue}{-2}$

Durch Ausprobieren erhalten wir:

$x_1= 1$ und $x_2= -2$

Der Nenner lässt sich mithilfe von Linearfaktoren also auch so schreiben:

$(x-1)\cdot (x-(-2))~~\rightarrow~~(x-1)\cdot (x+2)$

Schreiben wir nun sowohl den Zähler des Bruches als auch den Nenner des Bruches in der Produktschreibweise, also mithilfe von Linearfaktoren, so können wir den Bruch nun kürzen, da nun ein Produkt vorliegt (und keine Summe mehr).

$\large{\frac{x^2+4x-6}{x^2+x-2} = \frac{(x+5)\cdot (x-1)}{(x-1)\cdot (x+2)}=\frac{(x+5)\cdot \cancel{(x-1)}}{\cancel{(x-1)}\cdot (x+2)}= \frac{x+5}{x+2}} $

Dank der Linearfaktorzerlegung haben wir den komplizierten Bruch vereinfacht.

Mit den Übungsaufgaben kannst du dein Wissen zu der Linearfaktorzerlegung vertiefen. Viel Erfolg dabei!

Video: Simon Wirth

Text: Chantal Rölle