abiweb
online lernen

Die perfekte Abiturvorbereitung

Mitternachtsformel: Herleitung und Übungen

Terme und Gleichungen
Quadratische Gleichungen lösen

Video: Mitternachtsformel: Herleitung und Übungen

Es gibt verschiedene Möglichkeiten, eine quadratische Gleichung zu lösen. Neben der quadratischen Ergänzung und der p-q-Formel gibt es noch die sogenannte Mitternachtsformel, auch abc-Formel genannt, in Mathe.

Merke

Hier klicken zum Ausklappen

Für eine Gleichung der Form $\textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c} = 0$ gilt:

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

Hinweis

Hier klicken zum Ausklappen

Die Mitternachtsformel verdankt ihren Namen der Vorstellung, dass jeder Schüler, selbst wenn er um Mitternacht geweckt wird, diese Formel aufsagen kann. Der korrekte Ausdruck ist abc-Fomel und leitet sich von den drei einzusetzenden Werten $a$, $b$ und $c$ ab.

Folgend zeigen wir dir die Herleitung der Mitternachtsformel bzw. abc-Formel, sowie die Anwendung in Mathe an Beispielen.

Herleitung der Mitternachtsformel

Es existieren verschiedene Herleitungen der Mitternachtsformel. Die wohl anschaulichste ist die Herleitung mit Hilfe der p-q-Formel. Zunächst gehen wir von der allgemeinen Form einer quadratischen Gleichung aus.

$\textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c} = 0~~~~~|:\textcolor{blue}{a}$

$x^2 + \frac{\textcolor{green}{b}}{\textcolor{blue}{a}} \cdot x + \frac{\textcolor{brown}{c}}{\textcolor{blue}{a}} = 0$

Durch das Dividieren durch den Faktor vor dem $x^2$ erhalten wir die sogenannte Normalform einer quadratischen Gleichung, die sich mit Hilfe der p-q-Formel lösen lässt.

Hinweis

Hier klicken zum Ausklappen

p-q Formel:

Für eine Gleichung der Form $x^2 + \textcolor{red}{p} \cdot x + \textcolor{orange}{q} = 0$ gilt:

$x_{1/2} = -\frac{\textcolor{red}{p}}{2}\pm \sqrt{(\frac{\textcolor{red}{p}}{2})^2-\textcolor{orange}{q}}$

In diesem Fall gilt:

  • $\frac{\textcolor{green}{b}}{\textcolor{blue}{a}} = \textcolor{red}{p}$
  • $\frac{\textcolor{brown}{c}}{\textcolor{blue}{a}} = \textcolor{orange}{q}$

Beginnen wir mit der Herleitung:

$x^2 + \frac{\textcolor{green}{b}}{\textcolor{blue}{a}} \cdot x + \frac{\textcolor{brown}{c}}{\textcolor{blue}{a}} = 0~~~~|p-q-Formel$

$x_{1,2} = - \frac{\frac{\textcolor{green}{b}}{\textcolor{blue}{a}}}{2} \pm \sqrt{(\frac{\frac{\textcolor{green}{b}}{\textcolor{blue}{a}}}{2})^2-\frac{\textcolor{brown}{c}}{\textcolor{blue}{a}}}$

Die Doppelbrüche können wir zusammenfassen, indem wir anstatt durch zwei zu teilen, mit $\frac{1}{2}$ multiplizieren.

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \sqrt{(\frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}})^2-\frac{\textcolor{brown}{c}}{\textcolor{blue}{a}}}$

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \sqrt{\frac{\textcolor{green}{b}^2}{4\cdot \textcolor{blue}{a}^2}-\frac{\textcolor{brown}{c}}{\textcolor{blue}{a}}}$

Die Brüche unter der Wurzel können voneinander subtrahiert werden. Dazu erweitern wir zunächst den rechten Bruch mit $4\cdot a$ , sodass die Brüche gleichnamig sind; nun können wir die Zähler voneinander subtrahieren.

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \sqrt{\frac{\textcolor{green}{b}^2}{4\cdot \textcolor{blue}{a}^2}-\frac{4 \cdot \textcolor{blue}{a} \cdot \textcolor{brown}{c}}{4\cdot \textcolor{blue}{a}^2}}$

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \sqrt{\frac{\textcolor{green}{b}^2 - 4 \cdot \textcolor{blue}{a} \cdot \textcolor{brown}{c}}{4\cdot \textcolor{blue}{a}^2}}$

Im Nenner des Bruchs können wir nun die Wurzel ziehen - im Zähler bleibt sie natürlich erhalten.

$x_{1,2} = - \frac{\textcolor{green}{b}}{2\cdot \textcolor{blue}{a}} \pm \frac{\sqrt{\textcolor{green}{b}^2 - 4 \cdot \textcolor{blue}{a} \cdot \textcolor{brown}{c}}}{2\cdot \textcolor{blue}{a}}$

Durch das Wurzelziehen erhalten wir zwei Brüche mit dem gleichen Nenner, die wir zusammenfassen können; wir erhalten die abc-Formel (Mitternachtsformel):

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{b^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

Wie du siehst, ist die Herleitung der Mitternachtsformel recht lang und auch kompliziert. Herleitungen sind sehr hilfreich, um zu verstehen, warum wir eine bestimmte Formel verwenden können. Wichtig ist jedoch vor allem, dass du die Formel korrekt anwenden kannst.

Merke

Hier klicken zum Ausklappen

Für eine Gleichung der Form $\textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c} = 0$ gilt:

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}$

Mitternachtsformel anwenden - Anzahl der möglichen Lösungen

Die Mitternachtsformel kann insgesamt drei Arten von Lösungen ergeben:

  • zwei reelle Lösungen
  • eine reelle Lösung
  • keine reelle Lösung

Welche Lösungsmenge vorliegt, hängt vom Term unterhalb der Wurzel ab. Man nennt diesen Term auch Diskriminante ($D$).

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}~~~~~~~~~~D = \textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}$

Die Diskriminante ist größer als null (D > 0)

Ergibt der Term unter der Wurzel eine positive Zahl, erhalten wir mit Hilfe der Mitternachtsformel zwei reelle Lösungen.

Beispiel

Hier klicken zum Ausklappen

$2\cdot x^2 - 8\cdot x+ 6 = 0$

$x_{1,2} = \frac{8~\pm~\sqrt{(-8)^2~-~4~ \cdot~2 \cdot~6}}{2~ \cdot~2}$

$x_{1,2} = \frac{8 \pm 4}{4}$

$x_1 = 1~~~~~x_2 = 3$

Die Diskriminante ist gleich null (D = 0)

Ergibt der Term unter der Wurzel genau null, erhalten wir mit Hilfe der Mitternachtsformel nur eine reelle Lösung.

Beispiel

Hier klicken zum Ausklappen

$2\cdot x^2 - 8 \cdot x + 8 = 0$

$x_{1,2} = \frac{-(-8)~\pm~\sqrt{(-8)^2~-~4~ \cdot~2 \cdot~8}}{2~ \cdot~2}$

$x_{1,2} = \frac{8 \pm \sqrt{0}}{4}$

$x=2$

Die Diskriminante ist kleiner als null (D < 0)

Ergibt der Term unter der Wurzel eine negative Zahl, besitzt die quadratische Gleichung keine reelle Lösung.

Beispiel

Hier klicken zum Ausklappen

$2\cdot x^2 -8 \cdot x + 9 = 0$

$x_{1,2} = \frac{-(-8)~\pm~\sqrt{(-8)^2~-~4~ \cdot~2 \cdot~9}}{2~ \cdot~2}$

$x_{1,2} = \frac{8 \pm \sqrt{-8}}{4}$

Merke

Hier klicken zum Ausklappen

Die Mitternachtsformel kann insgesamt drei Arten von Lösungen ergeben:

  • zwei reelle Lösungen ($D>0$)
  • eine reelle Lösung ($D=0$)
  • keine reelle Lösung ($D

Quadratische Gleichungen mit Hilfe der Mitternachtsformel lösen

Nun möchten wir mit der Mitternachtsformel bzw. abc-Formel folgendes Beispiel berechnen. Dazu betrachten wir die quadratische Gleichung:

$2x^2 - 4 \cdot x - 16 = 0$

Mit Hilfe der Mitternachtsformel können wir die quadratische Gleichung sofort ausrechnen.

$\textcolor{blue}{a} \cdot x^2 + \textcolor{green}{b} \cdot x + \textcolor{brown}{c} = 0~~~~~~~\rightarrow~~~~\textcolor{blue}{2} \cdot x^2  \textcolor{green}{-4} \cdot x \textcolor{brown}{-16} = 0$

$x_{1,2} = \frac{\textcolor{green}{-b}~\pm~\sqrt{\textcolor{green}{b}^2~-~4~ \cdot~\textcolor{blue}{a} \cdot~\textcolor{brown}{c}}}{2~ \cdot~\textcolor{blue}{a}}~~~~\rightarrow~~~~x_{1,2} = \frac{\textcolor{green}{-(-4)}~\pm~\sqrt{\textcolor{green}{(-4)}^2~-~4~ \cdot~\textcolor{blue}{2} \cdot~\textcolor{brown}{(-16)}}}{2~ \cdot~\textcolor{blue}{2}}$

$x_{1,2} = \frac{4 \pm \sqrt{144}}{4}$

$x_1= -2~~~~~~~~~x_2=4$

Mitternachtsformel und pq-Formel im Vergleich

Quadratische Gleichungen kann man sowohl mit der Mitternachtsformel als auch mit der p-q-Formel lösen. Welche Formel du verwenden kannst, hängt von der Form ab, in der die quadratische Gleichung vorliegt.

Vergleich: p-q-Formel und Mitternachtsformel
Vergleich: p-q-Formel und Mitternachtsformel

Um mit der p-q-Formel zu rechnen, musst du die quadratische Gleichung zunächst in die Normalform bringen, indem du durch den Faktor vor dem $x^2$ dividierst. Bei dieser Umformung entstehen häufig Brüche, die du bei der Mitternachtsformel vermeiden kannst.

Bei der Mitternachtsformel rechnest du nämlich direkt mit der allgemeinen Form der quadratischen Gleichung - in diesem Fall musst du in der Regel keine Umformung vornehmen. Die Mitternachtsformel ist also in den meisten Fällen direkt anwendbar. Auf der anderen Seite ist der mathematische Ausdruck der Mitternachtsformel deutlich komplizierter als der der p-q-Formel, sodass beim Benutzen der Mitternachtsformel häufiger Fehler passieren.

Welche Formel benutzt werden sollte, hängt also sowohl von der Aufgabe, als auch vom persönlichen Empfinden ab. In der Regel empfiehlt sich die p-q-Formel als erste Wahl. Entstehen bei der Umformung in die Normalform jedoch Brüche, sollte man lieber auf die Mitternachtsformel ausweichen.

Dein neu erlerntes Wissen kannst du in unseren Übungsaufgaben zur Mitternachtsformel bzw. abc-Formel testen! Viel Erfolg dabei!

Multiple-Choice

In welchem Fall hat eine quadratische Gleichung keine reelle Lösung?

0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.