abiweb
online lernen

Die perfekte Abiturvorbereitung
in Chemie

Im Kurspaket Chemie erwarten Dich:
  • 42 Lernvideos
  • 208 Lerntexte
  • 747 interaktive Übungen
  • original Abituraufgaben
gratis testen
Auf dem Papier entsteht der Eindruck, dass ein Molekül starr ist. Das ist nicht so! Es ist vielmehr ständig verschiedenen Einflüssen (thermisch, chemisch, elektrisch) unterworfen.

Dies führt dazu, dass sich Elektronen verschieben (Ladungsverschiebung) und so viele „Varianten“ oder Grenzstrukturen eines Moleküls vorliegen, in denen die Elektronen anders verteilt sind, die Grundstruktur des Moleküls sich aber praktisch kaum ändert.

Die Darstellung der mesomeren Grenzstrukturen ist eine Methode, die Bindungsverhältnisse in Molekülen wiederzugeben, denn eine einzelne Lewis-Formel könnte diese nicht vollständig zum Ausdruck bringen. Die realen Zustände liegen als Mittel zwischen mehreren Grenzformeln vor, was man in der Bindungstheorie als Resonanz bezeichnet.

Resonanz: Mittel aus den realen Bindungszuständen eines Moleküls

Beispiel:

mesomerie ethanal.wmf

mesomere Grenzstrukturen des Ethanals: Die π-Elektronen „schwingen“ zwischen der C=O-Bindung und dem Sauerstoffatom.

Bei verschiedenen Reaktionen sollten gerade mesomere Grenzstrukturen betrachtet werden, so können verschiedene Mechanismen leichter erklärt werden.

Induktive Effekte

Die induktiven Effekte wurden bereits in einem eigenen Kapitel besprochen, wiederholen wir sie kurz:

a)„+I“ = positiver induktiver Effekt: EinAtomoder eine Atomgruppe erhöhen die Elektronendichte im Rest eines Moleküls.

b)„-I“ = negativer induktiver Effekt: EinAtomoder eine Atomgruppe verringern die Elektronendichte im Rest eines Moleküls.

Mesomere Effekte

Die beiden mesomeren Effekte sind ebenfalls elektronische Effekte, bei denen entweder ein Atom mit mindestens einem freien Elektronenpaar oder eine Gruppe aus Atomen, die Mehrfachbindungen enthält, die Elektronendichte im Molekül verändert.

Für das Molekül können dann mesomere Grenzstrukturen aufgestellt werden, die Formalladungen beinhalten. Man unterscheidet zwei Arten mesomerer Effekte:

  • „+M“ = positiver mesomerer Effekt: Substituenten erhöhen die Elektronendichte im Ring und beschleunigen dadurch einen elektrophilen Angriff des Zweitsubstituenten. Diesen Effekt üben, nach abnehmender Stärke geordnet, aus:

o –NH2

o –OH

o –Cl

o –Br

o –I

anilin resonanz.wmf
Beispiel: +M-Effekt durch die Aminogruppe im Anilin:

Resonanz im Anilinmolekül: Die Aminogruppe erhöht die Elektronendichte an bestimmten Stellen im Ring.

  • „-M“ = negativer mesomerer Effekt: Substituenten verringern die Elektronendichte im Molekül und erschweren den Angriff eines elektrophilen Zweitsubstituenten durch Herabsetzung der Elektronendichte im Ring. Diesen Effekt üben u.a., nach abnehmender Stärke geordnet, aus:

o–NO2

o–COOH

o–CHO

Beispiel: -M-Effekt durch die Aldehydgruppe im Benzaldehyd:

benzaldehyd resonanz.wmf

Resonanz im Benzaldehydmolekül: Die Aldehydgruppe verringert die Elektronendichte an bestimmten Stellen im Ring.

Lückentext
Bitte die Lücken im Text sinnvoll ausfüllen.
  • „+M“ = positiver mesomerer Effekt: Substituenten die Elektronendichte im Ring und dadurch einen elektrophilen Angriff des Zweitsubstituenten. 
  • „-M“ = negativer mesomerer Effekt: Substituenten die Elektronendichte im Molekül und  den Angriff eines elektrophilen Zweitsubstituenten durch Herabsetzung der Elektronendichte im Ring.
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Vorstellung des Online-Kurses Organische ChemieOrganische Chemie
Dieser Inhalt ist Bestandteil des Online-Kurses

Organische Chemie

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundlagen der Kohlenstoffchemie
    • Einleitung zu Grundlagen der Kohlenstoffchemie
    • Orbitalmodell
    • Überblick und Formen der Orbitale
    • Grundregeln der Orbitaltheorie
    • Verteilung der Elektronen auf die Atome im Grundzustand
    • Hybridisierung
    • Hybridorbitale
    • Übersicht über die Bindungstypen
  • Nomenklatur nach IUPAC
    • Einleitung zu Nomenklatur nach IUPAC
  • Labormethoden
    • Einleitung zu Labormethoden
    • Vorbeugendes Gefahrstoffrecht
  • Organische Verbindungen - Typen, Eigenschaften und Reaktionen
    • Einleitung zu Organische Verbindungen - Typen, Eigenschaften und Reaktionen
    • Alkane
    • Typen von Kohlenstoffatomen
    • Wichtige Reaktionstypen der Alkane: radikalische Substitution
    • Cycloalkane
    • Alkene
    • Sonderfall Doppelbindung
    • Isomerisierung zu Cycloalkanen
    • Typische Reaktionen: Elektrophile Addition
    • Halogenalkane
    • Eliminierungsreaktion E
    • Polyene
    • Alkine
    • Alkohole
      • Einleitung zu Alkohole
      • Mehrwertige Alkohole
      • Eigenschaften der Alkanole
      • Kohlenstoff-Partner-Konstellationen
      • Bildung von Alkanolen durch eine nucleophile Substitution
      • Oxidationszahlen
      • Partielle Oxidation von Alkoholen
      • Andere typische Reaktionen der Alkohole:SN1&SN2
    • Ether
      • Einleitung zu Ether
      • Synthese von Ethern
    • Carbonylverbindungen: Aldehyde und Ketone
      • Einleitung zu Carbonylverbindungen: Aldehyde und Ketone
      • Aldehyde
        • Einleitung zu Aldehyde
        • Nachweisreaktion der Aldehyde
        • Wichtige Aldehyde
      • Ketone
      • Reaktionen von Aldehyden und Ketonen
        • Einleitung zu Reaktionen von Aldehyden und Ketonen
        • Keto-Enol-Tautomerie
        • Hydratisierung
        • Halbacetalbildung
        • Acetalbildung
        • Aldolbildung
    • Carbonsäuren
      • Einleitung zu Carbonsäuren
      • Monoalkansäuren
      • Mehrwertige Carbonsäuren
      • Carbonsäurederivate
        • Einleitung zu Carbonsäurederivate
        • Hydroxycarbonsäuren
        • Aminosäuren
        • Halogenalkansäuren
    • Ester: Bildung und Spaltung
      • Einleitung zu Ester: Bildung und Spaltung
      • Verseifung
  • Aromaten – Aromatische Kohlenwasserstoffe
    • Einleitung zu Aromaten – Aromatische Kohlenwasserstoffe
    • Das aromatische System
    • Benzol: Eigenschaften und aromatische Struktur
      • Einleitung zu Benzol: Eigenschaften und aromatische Struktur
      • Derivate des Benzols
    • Mesomerie = mesomere Grenzstrukturen
    • Typische aromatische Reaktionen
      • Einleitung zu Typische aromatische Reaktionen
      • Elektrophile aromatische Substitution
      • Übersicht der Arten der elektrophilen aromatische Substitution
      • Zweitsubstitution
      • Dirigierender Effekt
    • Acidität: Anilin und Phenol im Vergleich mit Aliphaten
  • Reaktionstypen in der organischen Chemie
    • Einleitung zu Reaktionstypen in der organischen Chemie
    • Einfluss der Molekülstruktur auf das Reaktionsverhalten
  • Isomerie
    • Einleitung zu Isomerie
    • Stereochemie
    • Zentrale Begriffe der Isomerie
    • Darstellungsformen
    • Achirale Meso-Verbindungen
    • EPA-Modell
  • Farbstoffe und Farbigkeit
    • Einleitung zu Farbstoffe und Farbigkeit
    • Licht
    • Farbwahrnehmung
    • Farbmischung
    • Farbstoffe
      • Einleitung zu Farbstoffe
      • Chromophore
      • Auxochrome
      • Cyanin-Farbstoffe
      • Azofarbstoffe
        • Einleitung zu Azofarbstoffe
        • Generelle Synthese von Azofarbstoffen
        • Erzeugung von Anilingelb
        • Azofarbstoffe als Indikatoren
      • Triphenylmethanfarbstoffe
        • Einleitung zu Triphenylmethanfarbstoffe
        • Synthese der Triphenylmethanfarbstoffe am Beispiel des Phenolphthaleins
        • Indikatorwirkung von Phenolphthalein
      • Chlorophyll
      • Indigo
  • Makromoleküle
    • Einleitung zu Makromoleküle
    • Kunststoffe
      • Einleitung zu Kunststoffe
      • Einteilung der Kunststoffe
        • Einleitung zu Einteilung der Kunststoffe
        • Thermoplaste
        • Elastomere
        • Duroplaste
      • Kunststoff – Synthesen
        • Einleitung zu Kunststoff – Synthesen
        • Radikalische Polymerisation
        • Anionische Polymerisation
        • Kationische Polymerisation
        • Polykondensation
        • Polyaddition
      • Einige wichtige Kunststoffe
        • Einleitung zu Einige wichtige Kunststoffe
        • Silikone
        • Kohlenstofffasern
        • Polyethylen
        • Polyvinylchlorid
      • Recycling von Kunststoffen
  • Naturstoffchemie
    • Einleitung zu Naturstoffchemie
    • Nachweisreaktionen
    • Elementaranalyse
    • Fette
      • Einleitung zu Fette
      • Gewinnung
      • Unterteilung
      • Essentielle Fettsäuren
      • Eigenschaften
      • Reaktionen von Fetten
      • Bedeutung von Fetten im Organismus
      • Fetthärtung
      • Biodiesel
      • Palmöl
      • Tenside
        • Einleitung zu Tenside
        • Grenzflächenaktivität
        • Seife
        • Tensid – Typen
        • Waschwirkung
        • Tyndall-Effekt
    • Kohlenhydrate
      • Einleitung zu Kohlenhydrate
      • Unterteilung der Kohlenhydrate und ihre Projektionen
      • Stichpunkte zur Stereochemie der Kohlenhydrate
      • Nachweisreaktionen für Kohlenhydrate
    • Eiweiße
      • Einleitung zu Eiweiße
      • Aminosäuren = Grundbaustein der Proteine
        • Einleitung zu Aminosäuren = Grundbaustein der Proteine
        • Unterteilung der Aminosäuren
        • Essenzielle Aminosäuren
        • Säure-Base-Verhalten
        • Säure-Base-Titration der Aminosäuren
        • Funktionen der Aminosäuren im Körper
        • Nachweise
        • Strukturebenen der Proteinfaltung
    • Nukleinsäuren
      • Einleitung zu Nukleinsäuren
      • Nukleinsäuren: DNA
      • Nukleinsäuren: RNA
  • 143
  • 20
  • 342
  • 536

Unsere Nutzer sagen:

  • Gute Bewertung für Organische Chemie

    Ein Kursnutzer am 07.03.2015:
    "sehr gute Erklärung"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 20% bei deiner Kursbuchung!

20% Coupon: abitur20

Zu den Online-Kursen