abiweb
online lernen

Die perfekte Abiturvorbereitung
in Physik

Im Kurspaket Physik erwarten Dich:
  • 42 Lernvideos
  • 183 Lerntexte
  • 195 interaktive Übungen
  • original Abituraufgaben
gratis testen

Massendefekt von Kernen

Wir gelangen nun zu einem Thema, das uns die ungeheuren im Kern verborgenen Energien offenbaren wird.

Beispiel

Als Beispiel betrachten wir einen Heliumkern $^4_2 He$.

Man weiss, dass dieser Heliumkern aus 4 Nukleonen (2 Protonen und 2 Neutronen) aufgebaut ist. Die Massen $m_p$ (Masse des Protons) sowie $m_n$ (Masse des Neutrons) sind bekannt.

Was würde man nun beobachten, wenn man die Masse $m_K$ des vollständigen Heliumkerns bestimmt und mit der Summe aus den Massen der Bausteine vergleicht?

Antwort/Beobachtung:

Die Masse $m_K$ des eigentlichen Kerns ist (tatsächlich) geringer als die Summe der Massen seiner Bausteine. Man spricht vom Massendefekt.

Die obige Beobachtung ist in gewisser Sicht erstaunlich und führt uns automatisch zu den folgenden Fragen:

  1. Lässt sich der obige Massendefekt auch bei anderen (stabilen) Kernen beobachten?
  2. Wodurch kommt der Massendefekt zustande?

Die erste Frage lässt sich mit einem klaren Ja beantworten. Dass dies auch auf andere Kerne zutrifft, lässt sich mit der Ursache für den Massendefekt verstehen.

Merke

Die folgende Differenz wird als Massendefekt $\Delta m$ bezeichnet

$\Delta m=(Z\cdot m_p+N\cdot m_n)-m_K$

$m_p$: Masse des Protons                $Z$: Anzahl der Protonen

$m_n$: Masse des Neutrons              $N$: Anzahl der Neutronen

$m_K$: Masse des Kerns

Die Masse des Kerns ist geringer als die Summe der Massen seiner Nukleonen.

Erklärung des Massendefekts $\Delta m$

Wie kann sich nun diesen Massendefekt bzw. Massenverlust erklären?

Zerlegung eines Kerns in freie Nukleonen:

Zwischen den Nukleonen eines Kerns wirken stark anziehende Kernkräfte. Und um nun den Kern in seine Nukleonen zu spalten, muss man eine entsprechende Energie aufbringen. Man bezeichnet sie als Bindungsenergie $E_B$ des Kerns.

Aufbau eines Kerns aus freien Nukleonen:

Will man einen Kern umgekehrt aus seinen Nukleonen aufbauen, so wird beim Zusammenfügen die gleiche Energie $E_B$ freigesetzt.

Prinzip des Massendefekts
Prinzip des Massendefekts
Äquivalenz von Masse und Energie

Die freigesetzte Bindungsenergie $E_B$ ist relativistisch zu einem Massenverlust äquivalent. D.h. :

Summe der Massen der Nukleonen - Massenverlust (äquivalent zur Bindungsenergie)=Kernmasse

oder in Formeln

Methode

$(Z\cdot m_p+N\cdot m_n)-$ Massenverlust (äquivalent zur Bindungsenergie)$=m_K$

Vergleich mit der Formel für den Massendefekt:

$(Z\cdot m_p+N\cdot m_n)-\Delta m=m_K$

$\Rightarrow$ Massenverlust (äquivalent zur Bindungsenergie)=$\Delta m$

Der Massenverlust ist also der Massendefekt $\Delta m$.

Mit Hilfe der Einsteinschen Formel ($E=m\cdot c^2$) bekommt man in diesem speziellen Fall:

Merke

Der Massendefekt $\Delta m$ hat seine Ursache in der Bindungsenergie $E_B$, die den Kern zusammenhält. Beide sind zueinander äquivalent; d.h.

$E_B=\Delta m\cdot c^2$

Rechenbeispiel

Beispiel

Heliumkern

$m_K=4,003 u=6,647\cdot 10^{-27} kg$

$m_p=1,673\cdot 10^{-27} kg$

$m_n=1,675\cdot 10^{-27} kg$

$\Rightarrow \Delta m=2(1,673\cdot 10^{-27} kg+1,675\cdot 10^{-27} kg)-6,647\cdot 10^{-27} kg=0,049\cdot 10^{-27} kg$

$\Rightarrow E_B=0,049\cdot 10^{-27} kg \cdot (3\cdot 10^8 m/s)^2=4,41\cdot 10^{-12} J$

Die übliche Energieeinheit in der Kernphysik ist das Elektronvolt ($1 eV=1,602\cdot 10^{-19} J$)

$E_B\approx 27,5\cdot 10^6 eV=27,5 MeV$

Lückentext
Erkläre kurz den Massendefekt mit Hilfe des folgenden Lückentexts.
Der Massendefekt ist einfach ausgedrückt ein Verlust von Masse. Die kleinere Masse des Kerns im Vergleich zur Gesamtmasse der des Kerns hat ihre Ursache in einer Umwandlung von in .
Diese Energie muss man aufbringen, um den Kern in seine Bestandteile zu zerlegen. Man nennt sie daher .
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Vorstellung des Online-Kurses Atomphysik und KernphysikAtomphysik und Kernphysik
Dieser Inhalt ist Bestandteil des Online-Kurses

Atomphysik und Kernphysik

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Atomspektren
    • Einleitung zu Atomspektren
    • Emissionsspektrum des Wasserstoffatoms
      • Einleitung zu Emissionsspektrum des Wasserstoffatoms
      • Balmer-Serie
    • Absorptionsspektren
    • Franck-Hertz-Versuch
  • Atommodelle
    • Einleitung zu Atommodelle
    • Bohrsches Atommodell
      • Einleitung zu Bohrsches Atommodell
      • Diskrete Bahnradien
      • Diskrete Energiezustände
      • Termschema, Spektrallinien- Wasserstoffatom
    • Moderne Atommodelle der Quantenmechanik
      • Einleitung zu Moderne Atommodelle der Quantenmechanik
      • Der eindimensionale Potentialtopf
        • Einleitung zu Der eindimensionale Potentialtopf
        • Energiezustände im Potentialtopf
        • Quantenmechanische Deutung
      • Das Orbitalmodell
  • Kernphysik 1
    • Einleitung zu Kernphysik 1
    • Streuung von α-Teilchen an Atomkernen
    • Kernphysikalische Grundlagen und Begriffe
      • Einleitung zu Kernphysikalische Grundlagen und Begriffe
      • Kernkraft
    • Radioaktivität
      • Einleitung zu Radioaktivität
      • α-Zerfall
      • β-Zerfall
      • γ-Zerfall
    • Das Zerfallsgesetz
  • Kernphysik 2
    • Kernreaktionen
    • Massendefekt von Kernen
    • Anwendung: Nutzung der Kernenergie
      • Einleitung zu Anwendung: Nutzung der Kernenergie
      • Kernspaltung
      • Kernfusion
  • 25
  • 6
  • 28
  • 17

Unsere Nutzer sagen:

  • Miriam

    Miriam

    "Ich finde abiweb.de sehr hilfreich und die Themen sehr gut erklärt!! Vielen Dank!!"
  • Jens

    Jens

    "Endlich habe ich es verstanden :) Ich schreibe morgen meine Klausur und denke, dass ich es nun kann :)"
  • Michaela

    Michaela

    "Vielen Dank:) Wäre schön wenn sich meine Lehrerin so viel Zeit für alles nehmen könnte."

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 20% bei deiner Kursbuchung!

20% Coupon: abitur20

Zu den Online-Kursen