Bernoulli-Kette
Bernoulli-Experiment
Ein Zufallsexperiment mit genau zwei Ergebnissen heißt Bernoulli-Experiment. Dabei wird das eine Ergebnis als Erfolg (Treffer) und das andere Ergebnis als Misserfolg (Niete) gewertet. Die Wahrscheinlichkeit für einen Erfolg wird Erfolgswahrscheinlichkeit genannt und mit einem kleinen $\bf p$ bezeichnet. Die Wahrscheinlichkeit für einen Misserfolg ist $\bf 1-p $ und wird oft mit $\bf q$ bezeichnet.
Bernoulli-Kette
Führt man ein Bernoulli-Experiment n-mal, mit gleichbleibender Erfolgswahrscheinlichkeit $\bf p$, durch entsteht eine Bernoulli-Kette der Länge $\bf n$. Ein einfaches Beispiel ist das wiederholte Werfen einer Münze. Die dabei erzielten Ergebnisse werden häufig als n-Tupel der Form (0,1,1,1,0,1,0, ...) oder 0111010... angegeben, wobei die 1 für einen Erfolg steht. Da es von diesen n-Tupeln genau $2^n$ gibt, sind bei einer Bernoulli-Kette der Länge $\bf n$ genau $\bf 2^n$ verschiedene Ergebnisse möglich.
Beispiel
Wiederholtes Ziehen mit Zurücklegen aus einer Urne mit 8 schwarzen und 17 roten Kugeln. Die Länge n dieser Bernoulli-Kette wird durch die Anzahl der Wiederholungen bestimmt. Die Erfolgswahrscheinlichkeit $\bf p$ ist $\frac{8}{25}=32 \%$ oder $\frac{17}{25}= 68\%$ je nachdem was man als Erfolg oder Misserfolg ansieht.
Dagegen ist das Experiment von eben, wenn man die Kugeln nicht zurücklegt, keine Bernoulli-Kette. Die Entnahme von Kugeln ändert nämlich die Erfolgswahrscheinlichkeit von Ziehung zu Ziehung.
Man kann auch aus Zufallsexperiment, mit mehr als 2 möglichen Ergebnissen, ein Bernoulli-Experiment machen. Die Ergebnismenge $\Omega$ wird dazu in ein Ereignis $A$ und sein Gegenereignis $\overline{A}$ aufgeteilt. Ein Erfolg (Treffer) wird dann erzielt, wenn ein Ergebnis $\omega \in A$ eintritt.
Merke
$\Large p = Erfolgswahrscheinlichkeit$
$\Large n = Länge \; der \; Bernoulli-Kette$
Durch diese beiden Zahlen ist eine Bernoulli-Kette eindeutig bestimmt.
Weitere interessante Inhalte zum Thema
-
Kombinatorik
Vielleicht ist für Sie auch das Thema Kombinatorik (Wahrscheinlichkeit) aus unserem Online-Kurs Stochastik interessant.