abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 200 Lernvideos
  • 415 Lerntexte
  • 592 interaktive Übungen
  • original Abituraufgaben

Potenzregel

Ableiten
Ableitungsregeln

Die wichtigste Regel beim Ableiten ist die Potenzregel.

Merke

Hier klicken zum AusklappenDie Potenzregel besagt:
Ist f(x) eine Potenzfunktion $f(x)=x^n$,
dann lautet die Ableitungsfunktion $f´(x)=n\cdot x^{n-1}$.
n muss dabei keine ganze Zahl sein, sondern kann auch ein Bruch sein.

Beispiel

Hier klicken zum AusklappenBeispiele:
$f(x)=x^3 \to  f´(x)=3\cdot x^{3-1}=3\cdot x^2$
$f(x)=x^7\to  f´(x)=7\cdot x^{7-1}=7\cdot x^6$
$f(x)=x^{-2}\to  f´(x)=-2\cdot x^{-2-1}=-2\cdot x^{-3}$
$f(x)=x^{\frac{2}{3}} \to  f´(x)={\frac{2}{3}}\cdot x^{\frac{2}{3}-1}={\frac{2}{3}}\cdot x^{\frac{-1}{3}}$

Schwieriger ist das Ableiten von Potenzfunktionen bei f(x)=x und g(x)=1,
da es dort keinen offensichtlichen Exponenten gibt.
Beide Funktionen können aber auch mit Exponenten geschrieben werden:

$f(x)=x=1\cdot x^1$

$g(x)=1=x^0$

In dieser Schreibweise kann nun die Potenzregel angewendet werden:

$f´(x)=1\cdot x^{1-1}=1\cdot x^0=1$

$g´(x)=0\cdot x^{0-1}=0\cdot x^{-1}=0$

So ergibt sich folgende Regel für f(x)=x und g(x)=1:

Merke

Hier klicken zum Ausklappen

f(x)=x  $\to$ f´(x)=1

g(x)=1 $\to$  g´(x)=0

D.h. wird eine Funktion mit x abgeleitet fällt x weg,
wird eine Konstante abgeleitet fällt diese weg.

In den folgenden drei Videos werden nochmal verschiedene Beispiele dazu erklärt.

Video: Potenzregel

Dieser Inhalt ist Bestandteil des Online-Kurses

Grundlagen der Analysis (Analysis 1)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung Analysis I
    • Einleitung zu Einleitung Analysis I
  • Verständnis der Ableitung
    • Einleitung zu Verständnis der Ableitung
    • Was ist die Ableitung?
    • Die graphische Ableitung
      • Einleitung zu Die graphische Ableitung
      • Punkte mit waagerechter Tangente
        • Einleitung zu Punkte mit waagerechter Tangente
        • Extrempunkte graphisch
        • Sattelpunkte
      • Wendepunkte graphisch
        • Einleitung zu Wendepunkte graphisch
        • Rechts-Links-Wendepunkt graphisch ableiten
        • Links-Rechts-Wendepunkt graphisch ableiten
      • Vergleich der Wendepunkte
      • Graphen ableiten
  • Ableiten
    • Einleitung zu Ableiten
    • Ableitungsregeln
      • Einleitung zu Ableitungsregeln
      • Potenzregel
      • Faktorregel
      • Summenregel
      • Produktregel
      • Quotientenregel
      • Kettenregel
      • Komplexe Funktionen ableiten
      • Sinus, Cosinus, e-Funktion und Logarithmus ableiten
    • Kurvenscharen ableiten
    • Die Ableitung im Abitur - Ableitungen graphisch bestimmen
  • Grundaufgaben der Analysis
    • Einleitung zu Grundaufgaben der Analysis
    • y-Wert berechnen
    • x-Wert berechnen
    • Steigung berechnen bei gegebenen x-Wert
    • Punkt zu einer gegebenen Steigung berechnen
  • Funktionsuntersuchung ganzrationaler Funktionen Teil 1
    • Einleitung zu Funktionsuntersuchung ganzrationaler Funktionen Teil 1
    • Definitionsbereich
    • Symmetrie
    • Schnittpunkte mit den Achsen
      • Einleitung zu Schnittpunkte mit den Achsen
      • y-Achsenabschnitt
      • Nullstellen
      • Klassifizierung der Nullstellen
    • Extrempunkte
      • Einleitung zu Extrempunkte
      • Bedingungen für Extrempunkte
      • Berechnung der Extrempunkte
    • Wendepunkte
      • Einleitung zu Wendepunkte
      • Bedingungen für Wendepunkte
      • Berechnung von Wendepunkten
  • Funktionsuntersuchung ganzrationaler Funktionen Teil 2
    • Einleitung zu Funktionsuntersuchung ganzrationaler Funktionen Teil 2
    • Globalverhalten
    • Monotonie
    • Graph
    • Funktionsuntersuchung einer quadratischen Funktion
    • Funktionsuntersuchung im Abitur
  • Einführung in die Integralrechnung
    • Einleitung zu Einführung in die Integralrechnung
    • Von der Summe zum Integral
    • Die Stammfunktion und das unbestimmte Integral
    • Integrationsregeln
      • Einleitung zu Integrationsregeln
      • Potenzregel der Integration
      • lineare Substitution
    • Der Hauptsatz der Integral- und Differenzialrechung
    • Das bestimmte Integral
  • Integralrechnung - graphisches Integrieren
    • Einleitung zu Integralrechnung - graphisches Integrieren
    • graphisches Integrieren
    • Flächenberechnung
      • Einleitung zu Flächenberechnung
      • Fläche im Intervall
      • Fläche zwischen Graph und x-Achse
      • Fläche zwischen zwei Graphen
    • Die Integralrechung im Abitur
  • Funktionsuntersuchung ganzrationaler Kurvenscharen
    • Einleitung zu Funktionsuntersuchung ganzrationaler Kurvenscharen
    • Besonderheiten von Kurvenscharen
      • Einleitung zu Besonderheiten von Kurvenscharen
      • Klassifizierung von Kurvenscharen
        • Einleitung zu Klassifizierung von Kurvenscharen
        • Kurvenschar Bruch
        • Kurvenschar Wurzel 1
        • Kurvenschar Wurzel 2
        • Kurvenschar Hochpunkt/Tiefpunkt
      • Ortslinien von Kurvenscharen
    • Beispiele einer kompletten Kurvenscharfunktionsuntersuchung
      • Einleitung zu Beispiele einer kompletten Kurvenscharfunktionsuntersuchung
      • kubische Funktionenschar
        • Einleitung zu kubische Funktionenschar
        • Definitionsbereich und Symmetrie kubische Schar
        • Schnittpunkte mit den Achsen kubische Schar
        • Extrempunkte kubische Schar
        • Wendepunkte kubische Schar
        • Globalverhalten, Wertebereich, Monotonie kubische Schar
        • Graph kubische Schar
        • Ortslinie der Extrempunkte
  • Funktionsuntersuchung von e-Funktionen und Scharen
    • Einleitung zu Funktionsuntersuchung von e-Funktionen und Scharen
    • Besonderheiten einer Funktionsuntersuchung von e-Funktionen
      • Einleitung zu Besonderheiten einer Funktionsuntersuchung von e-Funktionen
      • Ableitung der e-Funktion
      • Asymptoten
    • Beispiele von Funktionsuntersuchungen von e-Funktionen
      • Einleitung zu Beispiele von Funktionsuntersuchungen von e-Funktionen
      • Einfache e-Funktion
      • komplexe e-Funktion
        • Einleitung zu komplexe e-Funktion
        • Definitionsbereich und Symmetrie komplexe e-Funktion
        • Schnittpunkte mit den Achsen komplexe e-Funktion
        • Extrempunkte komplexe e-Funktion
        • Wendepunkte komplexe e-Funktion
        • Globalverhalten, Wertebereich, Monotonie komplexe e-Funktion
        • Graph komplexe e-Funktion
    • Beispiel einer Funktionsuntersuchung einer e-Schar
      • Einleitung zu Beispiel einer Funktionsuntersuchung einer e-Schar
      • Definitionsbereich, Symmetrie, Schnittpunkte mit den Achsen e-Schar
      • Extrempunkte der e-Schar
      • Wendepunkte der e-Schar
      • Globalverhalten, Wertebereich, Monotonie e-Funktionenschar
      • Graph komplexe e-Funktionenschar
  • 99
  • 29
  • 174
  • 116