abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 168 Lernvideos
  • 416 Lerntexte
  • 592 interaktive Übungen
  • original Abituraufgaben

Normalenform einer Ebene

Ebenen in der analytischen Geometrie

Eine andere Möglichkeit, eine Ebene durch eine mathematische Gleichung zu beschreiben, ist die sogenannte Normalenform. Dieser wollen wir uns jetzt gedanklich nähern:

Überlegungen

  1. Überlegung: Zu jeder Ebene gibt es einen Vektor, der senkrecht auf dieser Ebene steht. Diesen Vektor nennen wir „Normalenvektor“ der Ebene. Dabei spielt es überhaupt keine Rolle, von welcher Stelle auf der Ebene aus man das betrachtet. Nur die Richtung zählt!
  2. Überlegung: Das Skalarprodukt zweier Vektoren, die orthogonal zueinander stehen, ist Null.
  3. Überlegung: Jeder Vektor, der in der Ebene liegt, ist senkrecht zu obigem Normalenvektor. Und jeder Vektor zwischen zwei beliebigen Punkten der Ebene liegt in der Ebene.

Methode

Hier klicken zum Ausklappen

Folgerung: Jeder beliebige Punkt der Ebene kann beschrieben werden durch ein Skalarprodukt zwischen dem Normalenvektor der Ebene und dem Verbindungsvektor des Punktes zu einem bekannten Punkt der Ebene. Dieses Skalarprodukt muss den Wert Null ergeben.

Merke

Hier klicken zum Ausklappen

Mathematisch ausgedrückt: $(\vec{x}-\vec{p})\cdot\vec{n}=0$.

Eine Skizze soll den Zusammenhang veranschaulichen:

Ebene in Normalenform
Ebene in Normalenform

Vorteil der Darstellung in Normalenform

Uns reicht zur eindeutigen Bestimmung einer Ebene ein Punkt, der in der Ebene liegt, und ein Vektor (der Normalenvektor der Ebene). Zwar erfordert die Bestimmung des Normalenvektors zuerst ein bisschen Rechnerei, doch lohnt sich der Aufwand rasch. Mittels des Normalenvektors lassen sich dann z.B. sehr einfach Schnittwinkel berechnen und die Normalenform einer Ebene erleichtert Abstandsberechnungen ungemein.

Beispiel

Hier klicken zum Ausklappen

Der Punkt P(1|2|0) liegt auf der Ebene E, die den Normalenvektor $\vec{n}=\begin{pmatrix}2\\1\\2\end{pmatrix}$ hat. Die Normalenform der Ebene E lautet dann:
$E:\quad\lbrack\vec{x}-\vec{p}\rbrack\cdot\vec{n}=\lbrack\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}-\begin{pmatrix}1\\2\\0\end{pmatrix}\rbrack\cdot\begin{pmatrix}2\\1\\2\end{pmatrix}=0$.
Hierbei steht $\vec{x}$ für den Ortsvektor eines beliebigen Punktes auf der Ebene.

Dieser Inhalt ist Bestandteil des Online-Kurses

Analytische Geometrie / Lineare Algebra (Agla)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung und Grundlagen
    • Einleitung zu Einleitung und Grundlagen
    • Koordinatensystem
    • Was sind Vektoren?
    • Begriff des Vektorraums
    • Vektorraum - Basis und Dimension
  • Rechnen mit Vektoren
    • Einleitung zu Rechnen mit Vektoren
    • Addition und Subtraktion von Vektoren
    • Vektor zwischen zwei Punkten
    • Betrag eines Vektors berechnen
    • Vielfache von Vektoren bilden
    • Linearkombination von Vektoren
    • Lineare (Un-)Abhängigkeit von Vektoren
  • Geraden
    • Einleitung zu Geraden
    • Aufstellen einer Geradengleichung
    • Eine Gerade - viele Gleichungen?
    • Lage von Geraden
    • Schnitte von Geraden
  • Weitere Rechenoperationen mit Vektoren
    • Einleitung zu Weitere Rechenoperationen mit Vektoren
    • Normierung eines Vektors
    • Skalarprodukt zweier Vektoren
    • Vektoren und Winkel
    • Vektorprodukt / Kreuzprodukt
  • Ebenen in der analytischen Geometrie
    • Einleitung zu Ebenen in der analytischen Geometrie
    • Aufstellen von Ebenen in Parameterform
    • Normalenform einer Ebene
    • Koordinatenform einer Ebene
    • Darstellung einer Ebene im Koordinatensystem
    • Ebenengleichungen umwandeln
    • Hessesche Normalenform
  • Lagebeziehungen und Abstände
    • Einleitung zu Lagebeziehungen und Abstände
    • Lagebeziehungen von Punkten, Geraden und Ebenen
    • Abstandsprobleme
      • Einleitung zu Abstandsprobleme
      • Abstände von Punkten
      • Abstände von Geraden
      • Abstände von Ebenen
  • Schnitte
    • Einleitung zu Schnitte
    • Schnitt Gerade-Gerade
    • Schnitt Ebene-Gerade
    • Schnitt Ebene-Ebene
  • Spiegelungen
    • Einleitung zu Spiegelungen
    • Spiegelung an einem Punkt
    • Spiegelung an einer Geraden
    • Spiegelung an einer Ebene
  • Lineare Gleichungssysteme
    • Einleitung zu Lineare Gleichungssysteme
    • Was ist ein Lineares Gleichungssystem (LGS)?
    • Lösen eines linearen Gleichungssystems
      • Einleitung zu Lösen eines linearen Gleichungssystems
      • Allgemeine Vorgehensweise zur Lösung eines linearen Gleichungssystems
      • Gauß-Verfahren
      • Lösungsmöglichkeiten
  • Matrizen
    • Einleitung zu Matrizen
    • Darstellung in Matrizenform
    • Besondere Matrizen
      • Einleitung zu Besondere Matrizen
      • Einheitsmatrix
      • Dreiecksmatrix
      • Inverse Matrix
  • Rechenregeln für Matrizen
    • Einleitung zu Rechenregeln für Matrizen
    • Addition von Matrizen
    • Vervielfachen von Matrizen
    • Multiplikation von Matrizen
    • Zusammenfassung Matrizen
  • Anwendungen von Matrizen
    • Einleitung zu Anwendungen von Matrizen
    • Verflechtungsmatrizen
      • Einleitung zu Verflechtungsmatrizen
      • Beschreibung Verflechtungsmatrix
      • Anwendungsbeispiel Verflechungsmatrix
      • Mehrstufige Prozesse
    • Übergangsmatrizen
      • Einleitung zu Übergangsmatrizen
      • Beschreibung
      • Zustandsvektoren
      • Fixvektor
  • 69
  • 20
  • 196
  • 44