abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 168 Lernvideos
  • 416 Lerntexte
  • 592 interaktive Übungen
  • original Abituraufgaben

Dichtefunktion der Normalverteilung

Normalverteilung

Eine stetige Zufallsgröße $X$ mit dem Erwartungswert $\mu$ und der Standardabweichung $\sigma$ heißt normalverteilt mit den den Parametern $\mu$ und $ \sigma$ (kurz $N (\mu ; \sigma)$-verteilt),

wenn sie die folgende Dichtefunktion besitzt:

$\Large \bf f_N(t)=\frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{ -\frac{1}{2} \cdot \left( \frac{t-\mu}{\sigma}\right)^2}$

2 Graphen von Dichten von Normalverteilungen
2 Graphen von Dichten von Normalverteilungen

Die Dichten von Normalverteilungen haben ein Maximum an der Stelle $\mu$, die Graphen sind symmetrisch zur Geraden $x=\mu$ und haben für $x \rightarrow \pm \infty$ die x-Achse als Asymptote. Mit zunehmender Standardabweichung $\sigma$ werden ihre Graphen flacher und breiter, umso kleiner $\sigma$ wird umso höher und schmaler werden die Graphen.

Standard-Normalverteilung

Ist $X \sim N (0 ; 1 )$-verteilt, so nennt man $X$ standardnormalverteilt die Dichte der Standard-Normalverteilung wird mit einem $ \large \bf \varphi $ bezeichnet und sieht so aus:

$\Large \bf \varphi (t)=\frac{1}{\sqrt{2 \pi}} \cdot e^{ -\frac{t^2}{2}} $

Dichte der Standard-Normalverteilung
Dichte der Standard-Normalverteilung

Gaußsche Glockenkurve

Die Form des Graphen von $\varphi (t) $ hat ihr den Namen Gaußsche Glockenkurve eingebracht.

Dieser Inhalt ist Bestandteil des Online-Kurses

Stochastik

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Beschreibende Statistik
    • Einführung
    • Klassen
    • Mittelwert, Median und Modus
    • Varianz und Standardabweichung
    • Darstellung von statistischen Daten
  • Wahrscheinlichkeit
    • Zufallsexperiment
    • Wahrscheinlichkeitsraum
    • Laplace-Experiment
    • Kombinatorik
  • Bedingte Wahrscheinlichkeit
    • Definition und Beispiele
    • Satz von Bayes
    • Unabhängigkeit
  • Zufallsgrößen
    • Definition Zufallsgröße
    • Wahrscheinlichkeits- und Dichtefunktion
    • Verteilungsfunktion
    • Erwartungswert einer Zufallsgröße
    • Varianz einer Zufallsgröße
  • Binomialverteilung
    • Bernoulli-Kette
    • Formel von Bernoulli
    • Erwartungswert und Varianz
    • Sigma-Regeln
  • Normalverteilung
    • Dichtefunktion der Normalverteilung
    • Verteilungsfunktion der Normalverteilung
    • Näherung für die Binomialverteilung
    • Zentraler Grenzwertsatz
  • Beurteilende Statistik
    • Einführung beurteilende Statistik
    • Signifikanztest
    • Gütefunktion und Operationscharakteristik
    • Konfidenzintervalle
  • 29
  • 11
  • 106
  • 29