abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 195 Lernvideos
  • 414 Lerntexte
  • 598 interaktive Übungen
  • original Abituraufgaben
gratis testen

Dichtefunktion der Normalverteilung

Eine stetige Zufallsgröße $X$ mit dem Erwartungswert $\mu$ und der Standardabweichung $\sigma$ heißt normalverteilt mit den den Parametern $\mu$ und $ \sigma$ (kurz $N (\mu ; \sigma)$-verteilt),

wenn sie die folgende Dichtefunktion besitzt:

$\Large \bf f_N(t)=\frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{ -\frac{1}{2} \cdot \left( \frac{t-\mu}{\sigma}\right)^2}$

2 Graphen von Dichten von Normalverteilungen
2 Graphen von Dichten von Normalverteilungen

Die Dichten von Normalverteilungen haben ein Maximum an der Stelle $\mu$, die Graphen sind symmetrisch zur Geraden $x=\mu$ und haben für $x \rightarrow \pm \infty$ die x-Achse als Asymptote. Mit zunehmender Standardabweichung $\sigma$ werden ihre Graphen flacher und breiter, umso kleiner $\sigma$ wird umso höher und schmaler werden die Graphen.

Standard-Normalverteilung

Ist $X \sim N (0 ; 1 )$-verteilt, so nennt man $X$ standardnormalverteilt die Dichte der Standard-Normalverteilung wird mit einem $ \large \bf \varphi $ bezeichnet und sieht so aus:

$\Large \bf \varphi (t)=\frac{1}{\sqrt{2 \pi}} \cdot e^{ -\frac{t^2}{2}} $

Dichte der Standard-Normalverteilung
Dichte der Standard-Normalverteilung

Gaußsche Glockenkurve

Die Form des Graphen von $\varphi (t) $ hat ihr den Namen Gaußsche Glockenkurve eingebracht.

Multiple-Choice
Wie wirkt sich eine Vergrößerung des Parameters $\large \mu$, bei gleichbleibendem $\large \sigma$, auf die Dichtefunktion einer Normalverteilung aus ?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Dieser Inhalt ist Bestandteil des Online-Kurses

Stochastik

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Beschreibende Statistik
    • Einführung
    • Klassen
    • Mittelwert, Median und Modus
    • Varianz und Standardabweichung
    • Darstellung von statistischen Daten
  • Wahrscheinlichkeit
    • Zufallsexperiment
    • Wahrscheinlichkeitsraum
    • Laplace-Experiment
    • Kombinatorik
  • Bedingte Wahrscheinlichkeit
    • Definition und Beispiele
    • Satz von Bayes
    • Unabhängigkeit
  • Zufallsgrößen
    • Definition Zufallsgröße
    • Wahrscheinlichkeits- und Dichtefunktion
    • Verteilungsfunktion
    • Erwartungswert einer Zufallsgröße
    • Varianz einer Zufallsgröße
  • Binomialverteilung
    • Bernoulli-Kette
    • Formel von Bernoulli
    • Erwartungswert und Varianz
    • Sigma-Regeln
  • Normalverteilung
    • Dichtefunktion der Normalverteilung
    • Verteilungsfunktion der Normalverteilung
    • Näherung für die Binomialverteilung
    • Zentraler Grenzwertsatz
  • Beurteilende Statistik
    • Einführung beurteilende Statistik
    • Signifikanztest
    • Gütefunktion und Operationscharakteristik
    • Konfidenzintervalle
  • 29
  • 13
  • 106
  • 15

Unsere Nutzer sagen:

  • Gute Bewertung für Stochastik

    Ein Kursnutzer am 19.01.2017:
    "Gut erklärt "