abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 195 Lernvideos
  • 414 Lerntexte
  • 598 interaktive Übungen
  • original Abituraufgaben
gratis testen

Methode

Um die Wendepunkte zu berechnen, muss man folgende Schritte ausführen:

  1. die zweite und die dritte Ableitung berechnen (f''(x) und f'''(x))
  2. die zweite Ableitung = Null setzen mit f''(x)=0 die Wendestelle xW berechnen (Gleichung nach x auflösen), d.h. den x-Wert des Wendepunktes berechnen
  3. mit f'''(xW) überprüfen, ob der Wendepunkt ein RL-WP oder ein LR-WP ist.
    Dazu wird die Wendestelle in die dritte Ableitung eingesetzt.
    Ist f'''(xW) < 0 ist der Wendepunkt ein LR-WP.
    Ist f'''(xW) > 0 ist der Wendepunkt ein RL-WP.
    ist f'''(xW)=0 ist es kein Wendepunkt.
  4. mit f(xW)=yW den y-Wert des Wendepunktes berechnen.
  5. Wendepunkt aufschreiben (xW|yW) z.B LR-WP (2|3)

Beispiel

f(x)=-3x³+12x+3

f(x)=-3x³+12x+3

  1. f'(x)=-9x²+12, f''(x)=-18x, f'''(x)=-18
  2. 0=-18x Gleichung auflösen: xE=0
  3. f'''(xW)=f'''(0)=-18, -18 ist kleiner als 0, also ist es ein LR-Wendepunkt
  4. f(xW)=f(0)=-3$\cdot$0³+12$\cdot$0+3=3
  5. LR-WP (0|3)

Beispiel

f(x)=2x³+6x²-5

f(x)=2x³+6x²-5

  1. f'(x)=6x²+12x, f''(x)=12x+12, f'''(x)=12
  2. 0=12x+12 Gleichung auflösen: xw=-1
  3. f'''(-1)=12 >0 -> RL-WP
  4. f(-1)=-1
  5. RL-WP (-1/-1)

Beispiel

$f(x)=0,5x^4-3x²+1$

$f(x)=0,5x^4-3x²+1$

  1. f'(x)=2x³-6x, f''(x)=6x²-6, f'''(x)=12x
  2. 0=6x²-6 Gleichung auflösen: xW1=1, xW2=-1
  3. f'''(1)=12 >0 -> RL-WP.    f'''(-1)=-12 -> LR-WP
  4. $f(1)=0,5\cdot 1^4-3\cdot 1²+1=-1,5f(-1)=0,5\cdot(-1)^4-3\cdot(-1)²+1=-1,5$
  5. RL-WP (1|-1,5) und LR-WP (-1|-1,5)

Beispiel

f(x)=x³-6x²+12x-10

f(x)=x³-6x²+12x-10

  1. f'(x)=3x²-12x+12. f''(x)=6x-12, f'''(x)=6
  2. 0=6x-12 Gleichung auflösen: xW=2
  3. f'''(2)=6 >0 -> RL-WP
  4. f(2)=2³-6$\cdot$2²+12$\cdot$2-10=8-24+24-10=-2
  5. RL-WP (2|-2)
    da auch f´(2)=3
  6. f'(x)=3x²-12x+12, f''(x)=6x-12,
  7. f'''(x)=6 $\cdot$ 2²-12 $\cdot$ 2+12=0 ist ist dieser Wendepunkt ein
    RL-Sattelpunkt

Mit dem Taschenrechner geht es natürlich schneller. Im nachfolgenden Video wird die Berechnung des Wendepunktes mit dem Classpad 330 gezeigt.

Video: Berechnung von Wendepunkten

In diesem Text wird eine Schritt für Schritt Anleitung für die Berechnung von Wendepunten gegeben und verschiedene Beispiele vorgerechnet. Abschließend wird die Berechnung der Wendepunkte mit dem Casio Classpad gezeigt.
Multiple-Choice
Welche Aussagen treffen auf die Funktion f(x)=-3x³-2x+1 zu?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Kommentare zum Thema: Berechnung von Wendepunkten

  • Andreas Erb schrieb am 10.04.2015 um 07:56 Uhr
    Hallo Marco, du hast recht. Hier hatte sich noch ein Tippfehler versteckt. Ich habe es verbessert.
  • Marco Lude schrieb am 09.04.2015 um 19:15 Uhr
    Wieso ist bei Beispiel 2 die 2.Ableitung 18x+4, wenn die erste Ableitung 6x^2+12x ist. Dann müsste die zweite Ableitung doch 12x+12 lauten oder nicht?
  • Judith Frauendorf schrieb am 15.06.2014 um 19:09 Uhr
    Hallo Georgios, ja das stimmt. Vielen Dank.
  • Georgios Krall schrieb am 28.05.2014 um 04:08 Uhr
    2. Ableitung muss -18 sein bei Aufgabe fx=-3x²+12x+3
Bild von Autor Dr. Judith Frauendorf

Autor: Dr. Judith Frauendorf

Dieses Dokument Berechnung von Wendepunkten ist Teil eines interaktiven Online-Kurses zum Thema Grundlagen der Analysis (Analysis 1).

Dr. Judith Frauendorf verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Grundlagen der Analysis (Analysis 1)Grundlagen der Analysis (Analysis 1)
Dieser Inhalt ist Bestandteil des Online-Kurses

Grundlagen der Analysis (Analysis 1)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung Analysis I
    • Einleitung zu Einleitung Analysis I
  • Verständnis der Ableitung
    • Einleitung zu Verständnis der Ableitung
    • Was ist die Ableitung?
    • Die graphische Ableitung
      • Einleitung zu Die graphische Ableitung
      • Punkte mit waagerechter Tangente
        • Einleitung zu Punkte mit waagerechter Tangente
        • Extrempunkte graphisch
        • Sattelpunkte
      • Wendepunkte graphisch
        • Einleitung zu Wendepunkte graphisch
        • Rechts-Links-Wendepunkt graphisch ableiten
        • Links-Rechts-Wendepunkt graphisch ableiten
      • Vergleich der Wendepunkte
      • Graphen ableiten
  • Ableiten
    • Einleitung zu Ableiten
    • Ableitungsregeln
      • Einleitung zu Ableitungsregeln
      • Potenzregel
      • Faktorregel
      • Summenregel
      • Produktregel
      • Quotientenregel
      • Kettenregel
      • Komplexe Funktionen ableiten
      • Sinus, Cosinus, e-Funktion und Logarithmus ableiten
    • Kurvenscharen ableiten
    • Die Ableitung im Abitur - Ableitungen graphisch bestimmen
  • Grundaufgaben der Analysis
    • Einleitung zu Grundaufgaben der Analysis
    • y-Wert berechnen
    • x-Wert berechnen
    • Steigung berechnen bei gegebenen x-Wert
    • Punkt zu einer gegebenen Steigung berechnen
  • Funktionsuntersuchung ganzrationaler Funktionen Teil 1
    • Einleitung zu Funktionsuntersuchung ganzrationaler Funktionen Teil 1
    • Definitionsbereich
    • Symmetrie
    • Schnittpunkte mit den Achsen
      • Einleitung zu Schnittpunkte mit den Achsen
      • y-Achsenabschnitt
      • Nullstellen
      • Klassifizierung der Nullstellen
    • Extrempunkte
      • Einleitung zu Extrempunkte
      • Bedingungen für Extrempunkte
      • Berechnung der Extrempunkte
    • Wendepunkte
      • Einleitung zu Wendepunkte
      • Bedingungen für Wendepunkte
      • Berechnung von Wendepunkten
  • Funktionsuntersuchung ganzrationaler Funktionen Teil 2
    • Einleitung zu Funktionsuntersuchung ganzrationaler Funktionen Teil 2
    • Globalverhalten
    • Wertebereich
    • Monotonie
    • Graph
    • Funktionsuntersuchung einer quadratischen Funktion
    • Funktionsuntersuchung im Abitur
  • Einführung in die Integralrechnung
    • Einleitung zu Einführung in die Integralrechnung
    • Von der Summe zum Integral
    • Die Stammfunktion und das unbestimmte Integral
    • Integrationsregeln
      • Einleitung zu Integrationsregeln
      • Potenzregel der Integration
      • lineare Substitution
    • Der Hauptsatz der Integral- und Differenzialrechung
    • Das bestimmte Integral
  • Integralrechnung - graphisches Integrieren
    • Einleitung zu Integralrechnung - graphisches Integrieren
    • graphisches Integrieren
    • Flächenberechnung
      • Einleitung zu Flächenberechnung
      • Fläche im Intervall
      • Fläche zwischen Graph und x-Achse
      • Fläche zwischen zwei Graphen
    • Die Integralrechung im Abitur
  • Funktionsuntersuchung ganzrationaler Kurvenscharen
    • Einleitung zu Funktionsuntersuchung ganzrationaler Kurvenscharen
    • Besonderheiten von Kurvenscharen
      • Einleitung zu Besonderheiten von Kurvenscharen
      • Klassifizierung von Kurvenscharen
        • Einleitung zu Klassifizierung von Kurvenscharen
        • Kurvenschar Bruch
        • Kurvenschar Wurzel 1
        • Kurvenschar Wurzel 2
        • Kurvenschar Hochpunkt/Tiefpunkt
      • Ortslinien von Kurvenscharen
    • Beispiele einer kompletten Kurvenscharfunktionsuntersuchung
      • Einleitung zu Beispiele einer kompletten Kurvenscharfunktionsuntersuchung
      • kubische Funktionenschar
        • Einleitung zu kubische Funktionenschar
        • Definitionsbereich und Symmetrie kubische Schar
        • Schnittpunkte mit den Achsen kubische Schar
        • Extrempunkte kubische Schar
        • Wendepunkte kubische Schar
        • Globalverhalten, Wertebereich, Monotonie kubische Schar
        • Graph kubische Schar
        • Ortslinie der Extrempunkte
  • Funktionsuntersuchung von e-Funktionen und Scharen
    • Einleitung zu Funktionsuntersuchung von e-Funktionen und Scharen
    • Besonderheiten einer Funktionsuntersuchung von e-Funktionen
      • Einleitung zu Besonderheiten einer Funktionsuntersuchung von e-Funktionen
      • Ableitung der e-Funktion
      • Asymptoten
    • Beispiele von Funktionsuntersuchungen von e-Funktionen
      • Einleitung zu Beispiele von Funktionsuntersuchungen von e-Funktionen
      • Einfache e-Funktion
      • komplexe e-Funktion
        • Einleitung zu komplexe e-Funktion
        • Definitionsbereich und Symmetrie komplexe e-Funktion
        • Schnittpunkte mit den Achsen komplexe e-Funktion
        • Extrempunkte komplexe e-Funktion
        • Wendepunkte komplexe e-Funktion
        • Globalverhalten, Wertebereich, Monotonie komplexe e-Funktion
        • Graph komplexe e-Funktion
    • Beispiel einer Funktionsuntersuchung einer e-Schar
      • Einleitung zu Beispiel einer Funktionsuntersuchung einer e-Schar
      • Definitionsbereich, Symmetrie, Schnittpunkte mit den Achsen e-Schar
      • Extrempunkte der e-Schar
      • Wendepunkte der e-Schar
      • Globalverhalten, Wertebereich, Monotonie e-Funktionenschar
      • Graph komplexe e-Funktionenschar
  • 100
  • 29
  • 175
  • 81

Unsere Nutzer sagen:

  • Gute Bewertung für Grundlagen der Analysis (Analysis 1)

    Ein Kursnutzer am 03.11.2014:
    "Einfach genial! Gut und verständlich erklärt (auf den Punkt gebracht)"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 20% bei deiner Kursbuchung!

20% Coupon: abitur20

Zu den Online-Kursen