abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 168 Lernvideos
  • 416 Lerntexte
  • 592 interaktive Übungen
  • original Abituraufgaben

Mehrstufige Prozesse

Anwendungen von Matrizen / Verflechtungsmatrizen

Interessant wird das Ganze, wenn für die Herstellung verschiedener Produkte auch noch diverse Zwischenprodukte nötig sind. Das Vorgehen ist hierbei völlig identisch, nur dass entsprechend mehr Schritte notwendig sind, um zu den benötigten Rohstoffen zu gelangen.

Verflechtungsdiagramm
Verflechtungsdiagramm

Ausgehend von dem gezeigten Diagramm wissen wir, dass zur Herstellung von zwei Endprodukten E1 und E2 vier Zwischenprodukte Z1-4 benötigt werden, welche wiederum aus den Rohstoffen R1-3 zusammengesetzt werden können.

Wir stellen zuerst die Bedarfsmatrix B für die Herstellung der Endprodukte aus den Zwischenprodukten auf.
$B= \begin{pmatrix} 1 & 4 \\ 2 & 2 \\ 1 & 3 \\ 5 & 2 \end{pmatrix}$.
Nehmen wir den Vektor $\vec e = \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}$ als Outputvektor und $\vec z = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix}$ als Inputvektor der Zwischenprodukte, so gilt ja $ \vec z = B \cdot \vec e = \begin{pmatrix} 1 & 4 \\ 2 & 2 \\ 1 & 3 \\ 5 & 2 \end{pmatrix} \cdot \vec e$.
Im nächsten Schritt bestimmen wir nun die Bedarfsmatrix für die Produktion der Zwischenprodukte aus den Rohstoffen:
$A = \begin{pmatrix} 1 & 3 & 4 & 2 \\ 2 & 4 & 1 & 1 \\ 3 & 2 & 1 & 2 \end{pmatrix}$. Für den Inputvektor $\vec r$ der Rohstoffe gilt in diesem Falle $\vec r = A \cdot \vec z = \begin{pmatrix} 1 & 3 & 4 & 2 \\ 2 & 4 & 1 & 1 \\ 3 & 2 & 1 & 2 \end{pmatrix}\cdot \vec z$.
Natürlich kann man den Bedarf an Rohstoffen für einen bestimmten Auftrag auch direkt berechnen, es gilt ja $\vec r = A \cdot \vec z$ und  $ \vec z = B \cdot \vec e$ und damit $ \vec r = A \cdot B \cdot \vec e$.

Die Multiplikation der Matrizen A und B liefert
$A \cdot B = \begin{pmatrix} 21 & 26 \\ 16 & 21 \\ 18 & 23 \end{pmatrix}$, und somit gilt für $ \vec r$: $ \vec r = \begin{pmatrix} 21 & 26 \\ 16 & 21 \\ 18 & 23 \end{pmatrix} \cdot \vec e$.

Sollen also zum Beispiel 60 Produkte E1 und 40 Produkte E2 hergestellt werden, braucht man für die Produktion $\vec r = \begin{pmatrix} 21 & 26 \\ 16 & 21 \\ 18 & 23 \end{pmatrix} \cdot \begin{pmatrix} 60 \\ 40 \end{pmatrix} = \begin{pmatrix} 2300 \\ 1800 \\ 2000 \end{pmatrix}$,
d.h. 2300 Einheiten von Rohstoff 1, 1800 Einheiten R2 und 2000 Einheiten R3.

Selbstverständlich kann dieser Prozess für beliebig viele Zwischenproduktstufen fortgesetzt werden.

Dieser Inhalt ist Bestandteil des Online-Kurses

Analytische Geometrie / Lineare Algebra (Agla)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung und Grundlagen
    • Einleitung zu Einleitung und Grundlagen
    • Koordinatensystem
    • Was sind Vektoren?
    • Begriff des Vektorraums
    • Vektorraum - Basis und Dimension
  • Rechnen mit Vektoren
    • Einleitung zu Rechnen mit Vektoren
    • Addition und Subtraktion von Vektoren
    • Vektor zwischen zwei Punkten
    • Betrag eines Vektors berechnen
    • Vielfache von Vektoren bilden
    • Linearkombination von Vektoren
    • Lineare (Un-)Abhängigkeit von Vektoren
  • Geraden
    • Einleitung zu Geraden
    • Aufstellen einer Geradengleichung
    • Eine Gerade - viele Gleichungen?
    • Lage von Geraden
    • Schnitte von Geraden
  • Weitere Rechenoperationen mit Vektoren
    • Einleitung zu Weitere Rechenoperationen mit Vektoren
    • Normierung eines Vektors
    • Skalarprodukt zweier Vektoren
    • Vektoren und Winkel
    • Vektorprodukt / Kreuzprodukt
  • Ebenen in der analytischen Geometrie
    • Einleitung zu Ebenen in der analytischen Geometrie
    • Aufstellen von Ebenen in Parameterform
    • Normalenform einer Ebene
    • Koordinatenform einer Ebene
    • Darstellung einer Ebene im Koordinatensystem
    • Ebenengleichungen umwandeln
    • Hessesche Normalenform
  • Lagebeziehungen und Abstände
    • Einleitung zu Lagebeziehungen und Abstände
    • Lagebeziehungen von Punkten, Geraden und Ebenen
    • Abstandsprobleme
      • Einleitung zu Abstandsprobleme
      • Abstände von Punkten
      • Abstände von Geraden
      • Abstände von Ebenen
  • Schnitte
    • Einleitung zu Schnitte
    • Schnitt Gerade-Gerade
    • Schnitt Ebene-Gerade
    • Schnitt Ebene-Ebene
  • Spiegelungen
    • Einleitung zu Spiegelungen
    • Spiegelung an einem Punkt
    • Spiegelung an einer Geraden
    • Spiegelung an einer Ebene
  • Lineare Gleichungssysteme
    • Einleitung zu Lineare Gleichungssysteme
    • Was ist ein Lineares Gleichungssystem (LGS)?
    • Lösen eines linearen Gleichungssystems
      • Einleitung zu Lösen eines linearen Gleichungssystems
      • Allgemeine Vorgehensweise zur Lösung eines linearen Gleichungssystems
      • Gauß-Verfahren
      • Lösungsmöglichkeiten
  • Matrizen
    • Einleitung zu Matrizen
    • Darstellung in Matrizenform
    • Besondere Matrizen
      • Einleitung zu Besondere Matrizen
      • Einheitsmatrix
      • Dreiecksmatrix
      • Inverse Matrix
  • Rechenregeln für Matrizen
    • Einleitung zu Rechenregeln für Matrizen
    • Addition von Matrizen
    • Vervielfachen von Matrizen
    • Multiplikation von Matrizen
    • Zusammenfassung Matrizen
  • Anwendungen von Matrizen
    • Einleitung zu Anwendungen von Matrizen
    • Verflechtungsmatrizen
      • Einleitung zu Verflechtungsmatrizen
      • Beschreibung Verflechtungsmatrix
      • Anwendungsbeispiel Verflechungsmatrix
      • Mehrstufige Prozesse
    • Übergangsmatrizen
      • Einleitung zu Übergangsmatrizen
      • Beschreibung
      • Zustandsvektoren
      • Fixvektor
  • 69
  • 20
  • 196
  • 44