Ebenengleichungen umwandeln
Schauen wir uns nun an, wie man Ebenenengleichungen in die
- Parameterform,
- Koordinatenform und die
- Normalenform
umwandelt.
Von der Parameter- zur Normalenform
Methode
Aus der Parametergleichung übernehmen wir den Aufpunkt der Ebene als Punkt für die Normalengleichung. Zu den beiden Spannvektoren suchen wir einen orthogonalen Vektor, den wir als Normalenvektor in die Gleichung schreiben.
Den Normalenvektor erhalten wir entweder durch Lösen des Gleichungssystems, das sich aus den Skalarprodukten ergibt, oder direkt durch Anwenden des Vektorprodukts. Im folgenden Beispiel sind beide Wege dargestellt.
Beispiel
Unsere Ebene E soll die Punkte A(0|0|-2), B(1|1|3) und C(2|0|2) enthalten. Eine mögliche Angabe in Parameterform ist dann $\vec{x}=\overrightarrow{OA}+r \cdot \overrightarrow{AB} + s \cdot \overrightarrow{AC}$.
Mit $\overrightarrow{AB}= \begin{pmatrix}1\\1\\5 \end{pmatrix}$ und $\overrightarrow{AC}= \begin{pmatrix}2\\0\\4 \end{pmatrix}$ ergibt sich daraus $\vec{x}=\begin{pmatrix}0\\0\\-2 \end{pmatrix}+ r \cdot \begin{pmatrix}1\\1\\5 \end{pmatrix} + s \cdot \begin{pmatrix}2\\0\\4 \end{pmatrix}$.
Über das Kreuzprodukt können wir nun einen Vektor berechnen, der orthogonal zu $\overrightarrow{AB}$ und $\overrightarrow{AC}$ ist.
Es ist $\overrightarrow{AB} \times \overrightarrow{AC}= \begin{pmatrix}1\\1\\5 \end{pmatrix} \times \begin{pmatrix}2\\0\\4 \end{pmatrix} = \begin{pmatrix}4\\6\\-2 \end{pmatrix}$.
Ein (möglichst einfacher) Normalenvektor $\vec{n}$ der Ebene ist dann $\begin{pmatrix}2\\3\\-1 \end{pmatrix} = \frac{1}{2} \cdot \begin{pmatrix}4\\6\\-2 \end{pmatrix}$.
Wenn wir nun noch den Punkt A(0|0|-2) als Punkt P der Ebene nehmen lautet unsere gesuchte Normalenform von E:
$\lbrack \vec{x} - \vec{p} \rbrack \cdot \vec{n} = \lbrack \vec{x} - \begin{pmatrix}0\\0\\-2 \end{pmatrix} \rbrack \cdot \begin{pmatrix}2\\3\\-1 \end{pmatrix} = 0$.
Alternativ können wir unseren Normalenvektor $\vec{n}$ aus der Bedingung erstellen, dass er senkrecht zu beiden Spannvektoren der Ebene sein muss. Damit ist das Skalarprodukt von $\vec{n}= \begin{pmatrix}n_1\\n_2\\n_3 \end{pmatrix}$ mit $\overrightarrow{AB}$ und $\overrightarrow{AC}$ gleich Null.
Es gilt also $\begin{pmatrix}n_1\\n_2\\n_3 \end{pmatrix} \cdot \begin{pmatrix}1\\1\\5 \end{pmatrix} = 0$ und $\begin{pmatrix}n_1\\n_2\\n_3 \end{pmatrix} \cdot \begin{pmatrix}2\\0\\4 \end{pmatrix} = 0$.
Ausmultipliziert steht dort: $n_1+n_2+5\cdot n_3 = 0$ und $2\cdot n_1 + 4 \cdot n_3 = 0$. Wählt man im zweiten Term für $n_1=2$ ergibt sich daraus für $n_3={-1}$. Eingesetzt in den ersten Term bedeutet das $2+ n_2 – 5 = 0$ und damit $n_2=3$.
Unser gesuchter Normalenvektor ist also $\vec{n}=\begin{pmatrix}2\\3\\-1 \end{pmatrix}$.
Von der Normalen- zur Koordinatenform
Methode
Der einfachste Weg: Wir stellen die Gleichung um und bilden auf beiden Seiten das Skalarprodukt.
Beispiel
Unsere Ebene E sei in Normalenform gegeben als $\lbrack \vec{x} - \begin{pmatrix}0\\0\\-2 \end{pmatrix} \rbrack \cdot \begin{pmatrix}2\\3\\-1 \end{pmatrix} = 0$.
Die Klammer ausmultiplizieren ergibt $\vec{x} \cdot \begin{pmatrix}2\\3\\-1 \end{pmatrix} - \begin{pmatrix}0\\0\\-2 \end{pmatrix} \cdot \begin{pmatrix}2\\3\\-1 \end{pmatrix} = 0$
oder $\vec{x} \cdot \begin{pmatrix}2\\3\\-1 \end{pmatrix} = \begin{pmatrix}0\\0\\-2 \end{pmatrix} \cdot \begin{pmatrix}2\\3\\-1 \end{pmatrix}$.
Bildet man nun das Skalarprodukt steht da $2x_1+3x_2-x_3={-2} \cdot {-1} = 2$, was unsere gesuchte Koordinatenform ist.
Von der Koordinaten- zur Normalenform
Beim umgekehrten Weg haben wir gesehen, dass die Einträge des Normalenvektors zu Koeffizienten von x1, x2 und x3 werden. Dieses Wissen machen wir uns jetzt zunutze.
Methode
Wir bilden aus den Koeffizienten einen Normalenvektor und suchen einen Punkt, der auf der Ebene liegt (Punktprobe). Damit lässt sich die Normalenform aufstellen.
Beispiel
Aus der Gleichung der Ebene in Koordinatenform $2x_1+3x_2-x_3=2$ lässt sich der Normalenvektor $\vec{n}=\begin{pmatrix}2\\3\\-1 \end{pmatrix}$ ablesen.
Einen beliebigen Punkt auf der Ebene bekommt man z.B. durch $x_1=1, x_2=2, x_3=6$, denn $2 \cdot 1 + 3 \cdot 2 – 6 \cdot 1 = 2$, wir haben also P(1|2|6).
Damit kann man die Normalenform der Ebene angeben mit $\lbrack \vec{x} - \vec{p} \rbrack \cdot \vec{n} = \lbrack \vec{x} - \begin{pmatrix}1\\2\\6 \end{pmatrix} \rbrack \cdot \begin{pmatrix}2\\3\\-1 \end{pmatrix} = 0$.
Von der Koordinaten- oder Normalenform zur Parameterform
Zur Parameterform kommt man am einfachsten, indem man sich drei beliebige Punkte auf der Ebene sucht und die Parametergleichung wie zu Beginn des Ebenen-Kapitels aufstellt.
Von der Parameterform zur Koordinatenform
Entweder man geht den Weg über die Normalenform oder man bestimmt die Spurpunkte der Ebene. Mit deren Hilfe kann man ebenfalls eine Koordinatengleichung aufstellen.
Weitere interessante Inhalte zum Thema
-
Normalenform einer Ebene
Vielleicht ist für Sie auch das Thema Normalenform einer Ebene (Ebenen in der analytischen Geometrie) aus unserem Online-Kurs Analytische Geometrie / Lineare Algebra (Agla) interessant.
-
Koordinatenform einer Ebene
Vielleicht ist für Sie auch das Thema Koordinatenform einer Ebene (Ebenen in der analytischen Geometrie) aus unserem Online-Kurs Analytische Geometrie / Lineare Algebra (Agla) interessant.