abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 195 Lernvideos
  • 414 Lerntexte
  • 598 interaktive Übungen
  • original Abituraufgaben
gratis testen

Hat man mit mehreren Geraden zu tun, so interessiert meist die gegenseitige Lage der Geraden zueinander.

In der (zweidimensionalen) Ebene war dies einfach. Entweder haben sich die Geraden geschnitten oder sie waren parallel zueinander. Als Spezialfall der Parallelität konnten die Geraden auch aufeinander liegen, man sagt dann auch sie sind identisch.

Als zusätzliche Möglichkeit im $\mathbb{R}^3$ können die Geraden jetzt auch „schräg aneinander vorbei“ laufen. Sie haben dann keinen Schnittpunkt und sind nicht parallel. Diesen Fall nennen wir windschief.

Untersuchen der Lage zweier Geraden zueinander

Methode

Um die Lage zweier Geraden zueinander zu überprüfen können wir wie folgt vorgehen:
Sind ihre Richtungsvektoren kollinear?
a) Ja: Die Geraden sind parallel oder identisch.
b) Nein: Die Geraden sind windschief zueinander oder sie schneiden sich.

Im Fall a) überprüfen wir, ob ein beliebiger Punkt (zum Beispiel der Aufpunkt) der einen Geraden auch auf der anderen Geraden liegt (siehe Stichwort „Punktprobe“ im Kapitel „Punkte und Geraden“). Ist dies der Fall, so sind sie identisch, ansonsten sind sie parallel.

Im Fall b) schauen wir, ob es einen Schnittpunkt der Geraden gibt. Dazu setzen wir die Geradengleichungen gleich und erhalten ein LGS. Wenn das LGS eine Lösung besitzt, schneiden sich die Geraden, ist es unlösbar, so sind sie windschief zueinander.

Methode

Tipp: Zuerst die Richtungsvektoren überprüfen. Häufig kommt man dann um das LGS herum ;-). Andernfalls versucht man das LGS zu lösen und muss sich anschließend noch überlegen, was die Lösung denn bedeutet.

Insgesamt erweist sich also folgendes Vorgehen von Vorteil:

Fallunterscheidung Geraden
Fallunterscheidung Geraden
Multiple-Choice
Die beiden Geraden g mit $\vec{x}= \begin{pmatrix} 4\\2\\3 \end{pmatrix} + t \cdot \begin{pmatrix} -2\\-1\\2 \end{pmatrix}$ und h mit $\vec{x}= \begin{pmatrix} 6\\8\\-11 \end{pmatrix} + t \cdot \begin{pmatrix} 3\\-1\\3 \end{pmatrix}$ ...
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Vorstellung des Online-Kurses Analytische Geometrie / Lineare Algebra (Agla)Analytische Geometrie / Lineare Algebra (Agla)
Dieser Inhalt ist Bestandteil des Online-Kurses

Analytische Geometrie / Lineare Algebra (Agla)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung und Grundlagen
    • Einleitung zu Einleitung und Grundlagen
    • Koordinatensystem
    • Was sind Vektoren?
    • Begriff des Vektorraums
    • Vektorraum - Basis und Dimension
  • Rechnen mit Vektoren
    • Einleitung zu Rechnen mit Vektoren
    • Addition und Subtraktion von Vektoren
    • Vektor zwischen zwei Punkten
    • Betrag eines Vektors berechnen
    • Vielfache von Vektoren bilden
    • Linearkombination von Vektoren
    • Lineare (Un-)Abhängigkeit von Vektoren
  • Geraden
    • Einleitung zu Geraden
    • Aufstellen einer Geradengleichung
    • Eine Gerade - viele Gleichungen?
    • Lage von Geraden
    • Schnitte von Geraden
  • Weitere Rechenoperationen mit Vektoren
    • Einleitung zu Weitere Rechenoperationen mit Vektoren
    • Normierung eines Vektors
    • Skalarprodukt zweier Vektoren
    • Vektoren und Winkel
    • Vektorprodukt / Kreuzprodukt
  • Ebenen in der analytischen Geometrie
    • Einleitung zu Ebenen in der analytischen Geometrie
    • Aufstellen von Ebenen in Parameterform
    • Normalenform einer Ebene
    • Koordinatenform einer Ebene
    • Darstellung einer Ebene im Koordinatensystem
    • Ebenengleichungen umwandeln
    • Hessesche Normalenform
  • Lagebeziehungen und Abstände
    • Einleitung zu Lagebeziehungen und Abstände
    • Lagebeziehungen von Punkten, Geraden und Ebenen
    • Abstandsprobleme
      • Einleitung zu Abstandsprobleme
      • Abstände von Punkten
      • Abstände von Geraden
      • Abstände von Ebenen
  • Schnitte
    • Einleitung zu Schnitte
    • Schnitt Gerade-Gerade
    • Schnitt Ebene-Gerade
    • Schnitt Ebene-Ebene
  • Spiegelungen
    • Einleitung zu Spiegelungen
    • Spiegelung an einem Punkt
    • Spiegelung an einer Geraden
    • Spiegelung an einer Ebene
  • Lineare Gleichungssysteme
    • Einleitung zu Lineare Gleichungssysteme
    • Was ist ein Lineares Gleichungssystem (LGS)?
    • Lösen eines linearen Gleichungssystems
      • Einleitung zu Lösen eines linearen Gleichungssystems
      • Allgemeine Vorgehensweise zur Lösung eines linearen Gleichungssystems
      • Gauß-Verfahren
      • Lösungsmöglichkeiten
  • Matrizen
    • Einleitung zu Matrizen
    • Darstellung in Matrizenform
    • Besondere Matrizen
      • Einleitung zu Besondere Matrizen
      • Einheitsmatrix
      • Dreiecksmatrix
      • Inverse Matrix
  • Rechenregeln für Matrizen
    • Einleitung zu Rechenregeln für Matrizen
    • Addition von Matrizen
    • Vervielfachen von Matrizen
    • Multiplikation von Matrizen
    • Zusammenfassung Matrizen
  • Anwendungen von Matrizen
    • Einleitung zu Anwendungen von Matrizen
    • Verflechtungsmatrizen
      • Einleitung zu Verflechtungsmatrizen
      • Beschreibung Verflechtungsmatrix
      • Anwendungsbeispiel Verflechungsmatrix
      • Mehrstufige Prozesse
    • Übergangsmatrizen
      • Einleitung zu Übergangsmatrizen
      • Beschreibung
      • Zustandsvektoren
      • Fixvektor
  • 69
  • 23
  • 196
  • 17

Unsere Nutzer sagen:

  • Miriam

    Miriam

    "Ich finde abiweb.de sehr hilfreich und die Themen sehr gut erklärt!! Vielen Dank!!"
  • Jens

    Jens

    "Endlich habe ich es verstanden :) Ich schreibe morgen meine Klausur und denke, dass ich es nun kann :)"
  • Michaela

    Michaela

    "Vielen Dank:) Wäre schön wenn sich meine Lehrerin so viel Zeit für alles nehmen könnte."

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 20% bei deiner Kursbuchung!

20% Coupon: abitur20

Zu den Online-Kursen