abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 168 Lernvideos
  • 416 Lerntexte
  • 592 interaktive Übungen
  • original Abituraufgaben

Lösen eines linearen Gleichungssystems

Lineare Gleichungssysteme

Natürlich interessiert nicht nur das Gleichungssystem an sich, sondern vor allem dessen Lösungen.

Methode

Hier klicken zum Ausklappen

Als Lösung eines Gleichungssystems der Form

$\begin{alignat} {3}
&a_1 x_1 &+ b_1 x_2 &+ c_1 x_3  & = d_1 \\
&a_2 x_1 &+ b_2 x_2 &+ c_2 x_3  & = d_2 \\
&a_3 x_1 &+ b_3 x_2 &+ c_3 x_3  & = d_3 \\
 \end{alignat}$

bezeichnen wir die Werte für x1, x2 und x3, für die alle Gleichungen erfüllt sind.

Dabei kann es auch vorkommen, dass es neben einer eindeutigen Lösung auch unendlich viele oder auch überhaupt keine Lösung gibt. Was die einzelnen Fälle jeweils bedeuten und wie wir damit umgehen, behandeln wir später im Kapitel. Vorerst wollen wir uns auf "schöne", eindeutig lösbare, lineare Gleichungssysteme beschränken, um sie ein bisschen besser kennen zu lernen.

Das Lösen eines LGS ist auch im folgenden Video beschrieben. Dennoch lohnen auch die nächsten Kapitel, in denen das Vorgehen in aller Ausführlichkeit noch einmal verdeutlich wird.

Dieser Inhalt ist Bestandteil des Online-Kurses

Analytische Geometrie / Lineare Algebra (Agla)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung und Grundlagen
    • Einleitung zu Einleitung und Grundlagen
    • Koordinatensystem
    • Was sind Vektoren?
    • Begriff des Vektorraums
    • Vektorraum - Basis und Dimension
  • Rechnen mit Vektoren
    • Einleitung zu Rechnen mit Vektoren
    • Addition und Subtraktion von Vektoren
    • Vektor zwischen zwei Punkten
    • Betrag eines Vektors berechnen
    • Vielfache von Vektoren bilden
    • Linearkombination von Vektoren
    • Lineare (Un-)Abhängigkeit von Vektoren
  • Geraden
    • Einleitung zu Geraden
    • Aufstellen einer Geradengleichung
    • Eine Gerade - viele Gleichungen?
    • Lage von Geraden
    • Schnitte von Geraden
  • Weitere Rechenoperationen mit Vektoren
    • Einleitung zu Weitere Rechenoperationen mit Vektoren
    • Normierung eines Vektors
    • Skalarprodukt zweier Vektoren
    • Vektoren und Winkel
    • Vektorprodukt / Kreuzprodukt
  • Ebenen in der analytischen Geometrie
    • Einleitung zu Ebenen in der analytischen Geometrie
    • Aufstellen von Ebenen in Parameterform
    • Normalenform einer Ebene
    • Koordinatenform einer Ebene
    • Darstellung einer Ebene im Koordinatensystem
    • Ebenengleichungen umwandeln
    • Hessesche Normalenform
  • Lagebeziehungen und Abstände
    • Einleitung zu Lagebeziehungen und Abstände
    • Lagebeziehungen von Punkten, Geraden und Ebenen
    • Abstandsprobleme
      • Einleitung zu Abstandsprobleme
      • Abstände von Punkten
      • Abstände von Geraden
      • Abstände von Ebenen
  • Schnitte
    • Einleitung zu Schnitte
    • Schnitt Gerade-Gerade
    • Schnitt Ebene-Gerade
    • Schnitt Ebene-Ebene
  • Spiegelungen
    • Einleitung zu Spiegelungen
    • Spiegelung an einem Punkt
    • Spiegelung an einer Geraden
    • Spiegelung an einer Ebene
  • Lineare Gleichungssysteme
    • Einleitung zu Lineare Gleichungssysteme
    • Was ist ein Lineares Gleichungssystem (LGS)?
    • Lösen eines linearen Gleichungssystems
      • Einleitung zu Lösen eines linearen Gleichungssystems
      • Allgemeine Vorgehensweise zur Lösung eines linearen Gleichungssystems
      • Gauß-Verfahren
      • Lösungsmöglichkeiten
  • Matrizen
    • Einleitung zu Matrizen
    • Darstellung in Matrizenform
    • Besondere Matrizen
      • Einleitung zu Besondere Matrizen
      • Einheitsmatrix
      • Dreiecksmatrix
      • Inverse Matrix
  • Rechenregeln für Matrizen
    • Einleitung zu Rechenregeln für Matrizen
    • Addition von Matrizen
    • Vervielfachen von Matrizen
    • Multiplikation von Matrizen
    • Zusammenfassung Matrizen
  • Anwendungen von Matrizen
    • Einleitung zu Anwendungen von Matrizen
    • Verflechtungsmatrizen
      • Einleitung zu Verflechtungsmatrizen
      • Beschreibung Verflechtungsmatrix
      • Anwendungsbeispiel Verflechungsmatrix
      • Mehrstufige Prozesse
    • Übergangsmatrizen
      • Einleitung zu Übergangsmatrizen
      • Beschreibung
      • Zustandsvektoren
      • Fixvektor
  • 69
  • 20
  • 196
  • 69