abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 168 Lernvideos
  • 416 Lerntexte
  • 592 interaktive Übungen
  • original Abituraufgaben

Lineare (Un-)Abhängigkeit von Vektoren

Rechnen mit Vektoren

Ist ein Vektor durch eine Linearkombination zweier anderer darstellbar, so heißen die drei Vektoren auch linear abhängig zueinander. Bildlich vorgestellt heißt dies, dass der resultierende Vektor als Kombination der beiden anderen in derselben Ebene wie diese liegen muss.

Beispiel des Nachweises einer linearen Abhängigkeit

Beispiel

Hier klicken zum Ausklappen

Sind die Vektoren $\vec{a}=\begin{pmatrix}1\\2\\1\end{pmatrix}$, $\vec{b}=\begin{pmatrix}0\\-1\\2\end{pmatrix}$ und $\vec{c}=\begin{pmatrix}2\\1\\8\end{pmatrix}$ linear abhängig?

Die Frage ist gleichbedeutend mit: Gibt es eine Linearkombination $r\cdot\vec{a}+s\cdot\vec{b}=\vec{c}$?

$\begin{align*}r\cdot 1 + s\cdot 0  & = 2\\ r\cdot 2 + s\cdot (-1) &= 1 \\ r\cdot 1 + s\cdot 2 &= 8\end{align*}$

Gehen wir zur Lösung der Frage schrittweise vor:

An den x1-Einträgen sieht man, dass $r=2$ sein muss ($r\cdot 1 + s\cdot 0 = 2$).

Damit ergibt sich aus der zweiten Zeile $s=3$ ($2 \cdot 2 + s \cdot {-1} = 8$).

Ein Einsetzen von r und s in der dritten Zeile ergibt eine wahre Aussage ($2 \cdot 1 + 3 \cdot 2 = 8$).

Somit gilt $2\cdot\vec{a}+3\cdot\vec{b}=\vec{c}$ und somit, dass die Vektoren $\vec{a}$, $\vec{b}$ und $\vec{c}$ linear abhängig sind.

Ein weiteres Beispiel für die "Abhängigkeit" gibt es hier im Video:

Beispiel für lineare Unabhängigkeit

Beispiel

Hier klicken zum Ausklappen

Sind die Vektoren $\vec{a}=\begin{pmatrix}1\\3\\2\end{pmatrix}$, $\vec{b}=\begin{pmatrix}0\\1\\2\end{pmatrix}$ und $\vec{c}=\begin{pmatrix}2\\4\\2\end{pmatrix}$ linear abhängig?

Wir fragen wieder: $r\cdot\vec{a}+s\cdot\vec{b}=\vec{c}$?

$\begin{align*}r\cdot 1 + s\cdot 0  & = 2\\ r\cdot 3 + s\cdot 1 &= 4 \\ r\cdot 2 + s\cdot 2 &= 2\end{align*}$

Die erste Zeile liefert uns wieder $r=2$.

Eingesetzt in die zweite Zeile ergibt sich $s={-2}$.

In der dritten Zeile ergibt sich aber ein Widerspruch ($2 \cdot 2 – 2 \cdot 2 \neq 2$).

Somit existiert keine passende Linearkombination und die Vektoren sind linear unabhängig zueinander.

Merke

Hier klicken zum Ausklappen

Anmerkung:
Klar ist, dass es in einer Ebene nicht mehr als 2 zueinander linear unabhängige Vektoren geben kann. Ebenso gilt im Dreidimensionalen, dass 3 linear unabhängige Vektoren ausreichen, um zu jedem Punkt im Raum zu gelangen. Also kann jeder Vektor durch eine Linearkombination dreier linear unabhängiger Vektoren dargestellt werden.

Einfachstes Beispiel: Jeder Vektor im $\mathbb{R}^3$ kann durch eine Kombination der Vektoren $\begin{pmatrix}1\\0\\0\end{pmatrix}$, $\begin{pmatrix}0\\1\\0\end{pmatrix}$ und $\begin{pmatrix}0\\0\\1\end{pmatrix}$ beschrieben werden.

Ein weiteres Beispiel für die "Unabhängigkeit" findet sich hier:

Dieser Inhalt ist Bestandteil des Online-Kurses

Analytische Geometrie / Lineare Algebra (Agla)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung und Grundlagen
    • Einleitung zu Einleitung und Grundlagen
    • Koordinatensystem
    • Was sind Vektoren?
    • Begriff des Vektorraums
    • Vektorraum - Basis und Dimension
  • Rechnen mit Vektoren
    • Einleitung zu Rechnen mit Vektoren
    • Addition und Subtraktion von Vektoren
    • Vektor zwischen zwei Punkten
    • Betrag eines Vektors berechnen
    • Vielfache von Vektoren bilden
    • Linearkombination von Vektoren
    • Lineare (Un-)Abhängigkeit von Vektoren
  • Geraden
    • Einleitung zu Geraden
    • Aufstellen einer Geradengleichung
    • Eine Gerade - viele Gleichungen?
    • Lage von Geraden
    • Schnitte von Geraden
  • Weitere Rechenoperationen mit Vektoren
    • Einleitung zu Weitere Rechenoperationen mit Vektoren
    • Normierung eines Vektors
    • Skalarprodukt zweier Vektoren
    • Vektoren und Winkel
    • Vektorprodukt / Kreuzprodukt
  • Ebenen in der analytischen Geometrie
    • Einleitung zu Ebenen in der analytischen Geometrie
    • Aufstellen von Ebenen in Parameterform
    • Normalenform einer Ebene
    • Koordinatenform einer Ebene
    • Darstellung einer Ebene im Koordinatensystem
    • Ebenengleichungen umwandeln
    • Hessesche Normalenform
  • Lagebeziehungen und Abstände
    • Einleitung zu Lagebeziehungen und Abstände
    • Lagebeziehungen von Punkten, Geraden und Ebenen
    • Abstandsprobleme
      • Einleitung zu Abstandsprobleme
      • Abstände von Punkten
      • Abstände von Geraden
      • Abstände von Ebenen
  • Schnitte
    • Einleitung zu Schnitte
    • Schnitt Gerade-Gerade
    • Schnitt Ebene-Gerade
    • Schnitt Ebene-Ebene
  • Spiegelungen
    • Einleitung zu Spiegelungen
    • Spiegelung an einem Punkt
    • Spiegelung an einer Geraden
    • Spiegelung an einer Ebene
  • Lineare Gleichungssysteme
    • Einleitung zu Lineare Gleichungssysteme
    • Was ist ein Lineares Gleichungssystem (LGS)?
    • Lösen eines linearen Gleichungssystems
      • Einleitung zu Lösen eines linearen Gleichungssystems
      • Allgemeine Vorgehensweise zur Lösung eines linearen Gleichungssystems
      • Gauß-Verfahren
      • Lösungsmöglichkeiten
  • Matrizen
    • Einleitung zu Matrizen
    • Darstellung in Matrizenform
    • Besondere Matrizen
      • Einleitung zu Besondere Matrizen
      • Einheitsmatrix
      • Dreiecksmatrix
      • Inverse Matrix
  • Rechenregeln für Matrizen
    • Einleitung zu Rechenregeln für Matrizen
    • Addition von Matrizen
    • Vervielfachen von Matrizen
    • Multiplikation von Matrizen
    • Zusammenfassung Matrizen
  • Anwendungen von Matrizen
    • Einleitung zu Anwendungen von Matrizen
    • Verflechtungsmatrizen
      • Einleitung zu Verflechtungsmatrizen
      • Beschreibung Verflechtungsmatrix
      • Anwendungsbeispiel Verflechungsmatrix
      • Mehrstufige Prozesse
    • Übergangsmatrizen
      • Einleitung zu Übergangsmatrizen
      • Beschreibung
      • Zustandsvektoren
      • Fixvektor
  • 69
  • 20
  • 196
  • 69