Schnitt Ebene-Gerade
Wenn eine Gerade nicht zufällig parallel zu einer gegebenen Ebene verläuft, muss sie diese zwangsweise in einem Punkt S schneiden. Um den Schnittpunkt zu berechnen, müssen wir Geraden- und Ebenengleichung gleichsetzen, wenn die Ebene in Parameterdarstellung gegeben ist. Ähnlich wie beim Schnitt von Geraden erhalten wir wieder ein lineares Gleichungssystem, jetzt allerdings mit drei Unbekannten (nämlich den Parametern aus den Gleichungen).
Einfacher gestaltet sich die Bestimmung des Schnittpunktes, wenn die Ebene in Koordinaten- oder Normalenform vorliegt. Dann setzen wir einfach für den Vektor $\vec{x}$ in der Ebenengleichung den Vektor $\vec{x}$ aus der Geradengleichung ein und lösen die entstehende Gleichung nach unserem Parameter auf. Ein kleines Beispiel mag dies verdeutlichen:
Beispiel
Berechne den Schnittpunkt der Geraden g mit $\vec{x} = \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 3\\4\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -1\\-2\\1 \end{pmatrix}$ und der Ebene E, gegeben durch $3x_1+5x_2-2x_3={-1}$.
Der Geradengleichung entnehmen wir $x_1 = 3 – t$, $x_2 = 4-2t$ und $x_3=0+t$ und setzen dies in die Ebenengleichung ein:
$\begin{align}3x_1+5x_2-2x_3&={-1} \\ 3 \cdot (3-t) + 5 \cdot (4-2t) -2 \cdot t &= -1 \\ 9-3t+20-10t-2t &= -1 \\ -15t &= -30 \\ t&=2 \end{align}$.
Eingesetzt in die Geradengleichung ergibt sich als Schnittpunkt
$\vec{x} = \begin{pmatrix} 3\\4\\0 \end{pmatrix} + 2 \cdot \begin{pmatrix} -1\\-2\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\2 \end{pmatrix}$, also $S(1|0|2)$.
Weitere interessante Inhalte zum Thema
-
Reaktionsgeschwindigkeit: beinflussende Faktoren
Vielleicht ist für Sie auch das Thema Reaktionsgeschwindigkeit: beinflussende Faktoren (Kinetik: rund um die Reaktionsgeschwindigkeit) aus unserem Online-Kurs Physikalische Chemie interessant.
-
Verständnis der Ableitung
Vielleicht ist für Sie auch das Thema Verständnis der Ableitung aus unserem Online-Kurs Grundlagen der Analysis (Analysis 1) interessant.