abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 195 Lernvideos
  • 414 Lerntexte
  • 598 interaktive Übungen
  • original Abituraufgaben
gratis testen

Die Anzahl an Wendepunkten einer Funktion zu bestimmen ist eine Aufgabenstellung, die im Mathe-Abitur immer wieder gestellt wird. Nähern wir uns der Berechnung anhand einer echten Abituraufgabe aus den Vorjahren.

Beispiel

Gibt es eine ganzrationale Funktion vierten Grades, deren Graph drei Wendepunkte besitzt?

Begründen Sie Ihre Antwort.

Es kann keine Funktion 4. Grades mit drei Wendepunkten geben. Wendepunkte werden über die Nullstellen der zweiten Ableitung berechnet.

  • Eine Funktion 4. Grades hat die Form: $f(x)=ax^4+bx^3+cx^2+dx+e$.
  • Die erste Ableitung lautet: $f´(x)=4ax^3+3bx^2+2cx+d$
  • Die zweite Ableitung lautet: $f´´(x)=12ax^2+6bx+2c$

Das heißt die zweite Ableitung ist eine Funktion 2. Grades. Eine Funktion 2. Grades kann aber maximal nur 2 Nullstellen besitzen, so dass die Funktion 4. Grades maximal nur 2 Wendepunkte besitzen kann.

Merke

Allgemein gilt folgendes:

  • Die maximale Anzahl der Nullstellen einer Funktion
    = Grad der Funktion
    z.B ax²+bx+c, Grad =2 -> Anzahl der maximalen Nullstellen =2
  • Die maximale Anzahl der Extremstellen einer Funktion
    = Grad der Funktion -1
    z.B ax³+bx²+cx+d, Grad =3 -> Anzahl der maximalen Extremstellen =3-1=2
  • Die maximale Anzahl der Wendestellen einer Funktion
    = Grad der Funktion -2
    z.B ax²+bx+c, Grad =2 -> Anzahl der maximalen Wendestellen =2-2=0

Kommentare zum Thema: Anzahl von Wendepunkten bestimmen

  • Andreas Erb schrieb am 05.03.2015 um 19:20 Uhr
    Vielen Dank für den Hinweis, ist schon geändert!
  • Nico Theiss schrieb am 05.03.2015 um 18:23 Uhr
    fehler: Zweite ABL. lautet am ende 2c und nicht 2d
Bild von Autor Dr. Judith Frauendorf

Autor: Dr. Judith Frauendorf

Dieses Dokument Anzahl von Wendepunkten bestimmen ist Teil eines interaktiven Online-Kurses zum Thema Weiterführende Aufgaben der Analysis (Analysis 2).

Dr. Judith Frauendorf verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Weiterführende Aufgaben der Analysis (Analysis 2)Weiterführende Aufgaben der Analysis (Analysis 2)
Dieser Inhalt ist Bestandteil des Online-Kurses

Weiterführende Aufgaben der Analysis (Analysis 2)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung zur weiterführenden Analysis
    • Einleitung zu Einleitung zur weiterführenden Analysis
  • Funktionsklassen
    • Einleitung zu Funktionsklassen
    • Logarithmusfunktionen
    • gebrochenrationale Funktionen
      • Einleitung zu gebrochenrationale Funktionen
      • senkrechte Asymptoten - Definitionsbereich
      • waagerechte und schiefe Asymptoten
  • Differentialrechnung
    • Einleitung zu Differentialrechnung
    • Tangenten- und Normalengleichungen
    • Extremwertaufgaben (Optimierung)
    • Bestimmen von Funktionsgleichungen
      • Einleitung zu Bestimmen von Funktionsgleichungen
      • Regression und Interplolation
      • Trassierung
        • Einleitung zu Trassierung
        • Begriffe der Trassierung
        • Vorgehen bei der Trassierung
        • Beispiel einer Trassierung
      • Steckbriefaufgaben
        • Einleitung zu Steckbriefaufgaben
        • Vorgehen bei Steckbriefaufgaben
        • 1. Beispiel einer Steckbriefaufgabe
        • 2. Beispiel einer Steckbriefaufgabe
  • Integralrechnung
    • Einleitung zu Integralrechnung
    • partielle Integration
    • Integration durch Substitution
    • Rotationsvolumen
  • Wachstums- und Zerfallsprozesse
    • Einleitung zu Wachstums- und Zerfallsprozesse
    • lineares Wachstum
    • exponentielles Wachstum
    • beschränktes Wachstum
      • Einleitung zu beschränktes Wachstum
      • Abituraufgabe zum Newtonschen Abkühlungsgesetz
        • Einleitung zu Abituraufgabe zum Newtonschen Abkühlungsgesetz
        • Newtonsches Abkühlungsgesetz: y-Wert berechnen
        • Newtonsches Abkühlungsgesetz: x-Wert bestimmen
        • Newtonsches Abkühlungsgesetz: Ungleichung lösen
        • Newtonsches Abkühlungsgesetz: Abkühlungsfaktor berechnen
        • Newtonsches Abkühlungsgesetz: Ableitung einer e-Funktion
        • Newtonsches Abkühlungsgesetz: Gleichung beweisen
        • Newtonsches Abkühlungsgesetz: Ableitung der Abkühlungsfunktion
        • Newtonsches Abkühlungsgesetz: Integral berechnen
    • Logistisches Wachstum
      • Einleitung zu Logistisches Wachstum
      • Aufgabe zum logistischen Wachstum
      • Logistisches Wachstum - Differentialgleichung
      • Logistisches Wachstum - Wachstum Fichtenumfang berechnen
      • Logistisches Wachstum - Approximation
  • Aufgaben ohne Hilfsmittel im Abitur
    • Einleitung zu Aufgaben ohne Hilfsmittel im Abitur
    • Anzahl von Wendepunkten bestimmen
  • 42
  • 13
  • 56
  • 12

Unsere Nutzer sagen:

  • Miriam

    Miriam

    "Ich finde abiweb.de sehr hilfreich und die Themen sehr gut erklärt!! Vielen Dank!!"
  • Jens

    Jens

    "Endlich habe ich es verstanden :) Ich schreibe morgen meine Klausur und denke, dass ich es nun kann :)"
  • Michaela

    Michaela

    "Vielen Dank:) Wäre schön wenn sich meine Lehrerin so viel Zeit für alles nehmen könnte."

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 20% bei deiner Kursbuchung!

20% Coupon: abitur20

Zu den Online-Kursen