abiweb
online lernen

Die perfekte Abiturvorbereitung
in Mathematik

Im Kurspaket Mathematik erwarten Dich:
  • 168 Lernvideos
  • 416 Lerntexte
  • 592 interaktive Übungen
  • original Abituraufgaben

Darstellung einer Ebene im Koordinatensystem

Ebenen in der analytischen Geometrie

Um Ebenen in einem dreidimensionalen Koordinatensystem darstellen zu können, brauchen wir bestimmte, eindeutig erkennbare Punkte. Hierzu nehmen wir die Schnittpunkte der Ebene mit den Achsen des Koordinatensystems. Diese nennt man auch Spurpunkte.

Wir erinnern uns an die Aufgaben im Zweidimensionalen die Nullstellen von Funktionen - also die Schnittpunkte ihres Graphen mit der x-Achse - zu bestimmen (y=0) und den Schnittpunkt mit der y-Achse herauszufinden (x=0 einsetzen). Im räumlichen Fall gehen wir ebenso vor: Für alle Punkte auf der x1-Achse gilt, dass ihre x2- und x3-Koordinaten den Wert Null haben.

Methode

Hier klicken zum Ausklappen

Um die Spurpunkte einer Ebene zu berechnen, setzen wir also in der Ebenengleichung (hier in Koordinatenform) die entsprechenden Koordinaten gleich Null.

Beispiel

Hier klicken zum Ausklappen

Gegeben ist die Ebene E mit E: $2x_1+x_2+2x_3=4$. Bestimme die Spurpunkte der Ebene und stelle die Ebene in einem geeigneten Koordinatensystem dar.
Schnittpunkt mit der x1-Achse (x2=x3=0): $2\cdot x_1+0+2\cdot 0=4 \iff x_1=2 \rightarrow$ S1(2|0|0)
Schnittpunkt mit der x2-Achse (x1=x3=0): $2\cdot 0+x_2+2\cdot 0=4 \iff x_2=4 \rightarrow$ S2(0|4|0)
Schnittpunkt mit der x3-Achse (x1=x2=0): $2\cdot 0+0+2\cdot x_3=4 \iff x_3=2 \rightarrow$ S3(0|0|2)

Methode

Hier klicken zum Ausklappen

Um jetzt mit Hilfe der Spurpunkte die Lage der Ebene anzudeuten, verbinden wir die 3 Spurpunkte zu einem Dreieck.

In unserem Beispiel sieht das dann so aus:

Ebene im Koordinatensystem
Ebene im Koordinatensystem

Das Verbindungsdreieck stellt natürlich nur einen kleinen Ausschnitt der (unendlich großen) Ebene dar. Aber es hilft einem ganz gut, sich die Lage der Ebene vorstellen zu können.

Anmerkung: Die Verbindungslinien der Spurpunkte liegen in den Koordinatenebenen. Sie sind also Teil der sogenannten Spurgeraden, den Schnittgeraden einer Ebene mit den Koordinatenebenen.

Dieser Inhalt ist Bestandteil des Online-Kurses

Analytische Geometrie / Lineare Algebra (Agla)

abiweb - Abitur-Vorbereitung online (abiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einleitung und Grundlagen
    • Einleitung zu Einleitung und Grundlagen
    • Koordinatensystem
    • Was sind Vektoren?
    • Begriff des Vektorraums
    • Vektorraum - Basis und Dimension
  • Rechnen mit Vektoren
    • Einleitung zu Rechnen mit Vektoren
    • Addition und Subtraktion von Vektoren
    • Vektor zwischen zwei Punkten
    • Betrag eines Vektors berechnen
    • Vielfache von Vektoren bilden
    • Linearkombination von Vektoren
    • Lineare (Un-)Abhängigkeit von Vektoren
  • Geraden
    • Einleitung zu Geraden
    • Aufstellen einer Geradengleichung
    • Eine Gerade - viele Gleichungen?
    • Lage von Geraden
    • Schnitte von Geraden
  • Weitere Rechenoperationen mit Vektoren
    • Einleitung zu Weitere Rechenoperationen mit Vektoren
    • Normierung eines Vektors
    • Skalarprodukt zweier Vektoren
    • Vektoren und Winkel
    • Vektorprodukt / Kreuzprodukt
  • Ebenen in der analytischen Geometrie
    • Einleitung zu Ebenen in der analytischen Geometrie
    • Aufstellen von Ebenen in Parameterform
    • Normalenform einer Ebene
    • Koordinatenform einer Ebene
    • Darstellung einer Ebene im Koordinatensystem
    • Ebenengleichungen umwandeln
    • Hessesche Normalenform
  • Lagebeziehungen und Abstände
    • Einleitung zu Lagebeziehungen und Abstände
    • Lagebeziehungen von Punkten, Geraden und Ebenen
    • Abstandsprobleme
      • Einleitung zu Abstandsprobleme
      • Abstände von Punkten
      • Abstände von Geraden
      • Abstände von Ebenen
  • Schnitte
    • Einleitung zu Schnitte
    • Schnitt Gerade-Gerade
    • Schnitt Ebene-Gerade
    • Schnitt Ebene-Ebene
  • Spiegelungen
    • Einleitung zu Spiegelungen
    • Spiegelung an einem Punkt
    • Spiegelung an einer Geraden
    • Spiegelung an einer Ebene
  • Lineare Gleichungssysteme
    • Einleitung zu Lineare Gleichungssysteme
    • Was ist ein Lineares Gleichungssystem (LGS)?
    • Lösen eines linearen Gleichungssystems
      • Einleitung zu Lösen eines linearen Gleichungssystems
      • Allgemeine Vorgehensweise zur Lösung eines linearen Gleichungssystems
      • Gauß-Verfahren
      • Lösungsmöglichkeiten
  • Matrizen
    • Einleitung zu Matrizen
    • Darstellung in Matrizenform
    • Besondere Matrizen
      • Einleitung zu Besondere Matrizen
      • Einheitsmatrix
      • Dreiecksmatrix
      • Inverse Matrix
  • Rechenregeln für Matrizen
    • Einleitung zu Rechenregeln für Matrizen
    • Addition von Matrizen
    • Vervielfachen von Matrizen
    • Multiplikation von Matrizen
    • Zusammenfassung Matrizen
  • Anwendungen von Matrizen
    • Einleitung zu Anwendungen von Matrizen
    • Verflechtungsmatrizen
      • Einleitung zu Verflechtungsmatrizen
      • Beschreibung Verflechtungsmatrix
      • Anwendungsbeispiel Verflechungsmatrix
      • Mehrstufige Prozesse
    • Übergangsmatrizen
      • Einleitung zu Übergangsmatrizen
      • Beschreibung
      • Zustandsvektoren
      • Fixvektor
  • 69
  • 20
  • 196
  • 69